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Although the effects on wages and living standards of productivity growth tend to be broad-

based, the productivity gains themselves are often concentrated in a handful of industries.  An 

analysis of industry contributions to aggregate productivity growth rate is therefore an important 

part of understanding an economy’s productivity performance. 

Much of the literature on productivity focuses on the role of total factor productivity (TFP; also 

known as multifactor productivity) as part of a framework that accounts for an economy’s 

growth based on quantity indexes of inputs of labor, capital, human capital and land.  In the 

appendix we discuss a formula for decomposing TFP into industry contributions based on 

Domar’s (1961) weighting scheme.  Under certain assumptions, the sum of the products of the 

industries’ Domar weights and the industries’ TFP growth exactly equals the economy’s 

aggregate TFP growth.  This result is noteworthy because in most frameworks for analyzing 

productivity growth, the movement of inputs between industries with different productivity 

levels causes changes in aggregate productivity that cannot be explained using a formula that 

looks only at within-industry productivity growth.       

Another strand of the productivity literature focuses on labor productivity, and that is the main 

topic of the present paper.  Labor productivity compares real output growth to a simple measure 

of the quantity of labor employed calculated as the sum of hours worked or FTEs (full-time 

equivalent employees).  Physical and intangible capital can be made to grow faster by investing 

more, and human capital can be increased by education and training, but the amount of labor 

resources that is available to an economy is for the most part predetermined (though some 

changes may be brought about by immigration or emigration.)  For an economy that does not 

have large flows of cross-border investment income, the standard of living and wages ultimately 

depend on labor productivity.  

In this paper I first review three of the existing formulas for decomposing the change in an 

economy’s aggregate labor productivity into contributions from industries and then develop 

some new formulas.  The industry contributions to productivity change are supposed to add up 

exactly to the change in aggregate labor productivity that has been calculated by comparing the 

growth rate of aggregate real output (real GDP in the case of the total economy, or real business 

sector output if non-market producers are excluded) to the growth of labor.   
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I.  The Two Challenges in Designing a Decomposition Formula for Productivity  

Besides differing in labor productivity growth rates, industries can differ in labor productivity 

levels because of factors such as differences in inputs of physical capital, intangible capital and 

human capital and differences in technology.
1
  Differences in labor productivity levels between 

industries mean that the movement of labor between industries a role in aggregate productivity 

growth, which complicates the analysis of industry sources of productivity growth.
2
  Treating the 

change in aggregate productivity that arises from labor reallocation as an effect that cannot be 

assigned to individual industries is one option, but this solution is not entirely satisfactory 

because productivity analysts prefer to have a set of industry contributions that completely 

account for aggregate productivity growth.  In this paper we therefore assume that the goal is to 

have a complete decomposition into industry contributions that has an appealing interpretation.  

Nevertheless, a certain amount of arbitrariness is inherent in any assignment of a jointly 

produced effect to individual contributors, so choosing the assignment scheme with appealing 

properties can be viewed as a difficult problem.     

Researchers who want to calculate industry contributions to productivity change for Canada, the 

United States, and certain other countries also face a second challenge.  This challenge arises 

because, unlike the Laspeyres (“constant price”) volume measures that were once used to 

calculate the official measures of real output, the Fisher index formulas now used generate non-

additive volume measures.  The modern formulas use direct Fisher indexes to measure growth in 

real output over adjacent periods (such as the current year and the preceding year), and chained 

Fisher indexes for comparisons over longer intervals of time.  Fisher or chained index measures 

of the real output of the components of an aggregate will generally fail to sum up to the directly 

calculated Fisher or chained volume measure of the output of the aggregate.   

Consequently, even though summing the nominal value added of every industry yields nominal 

GDP, a discrepancy will generally exist between the sum of the Fisher index measures of the real 

value added of every industry and real GDP as calculated from the Fisher formula.  This 

discrepancy between the sum of the parts and the whole can easily translate into a discrepancy 

between the sum of industry contributions to productivity change and the aggregate that they 

seek to decompose.  In particular, even if no labor is reallocated to or from any industry, a 

discrepancy may arise between the weighted average of the within-industry productivity changes 

and the directly calculated measure of economy-wide productivity.   

                                                 
1
 Differences in productivity levels related to technology may represent temporary disequilibria caused by factors 

such as lags in responses to changes in technology, trade opportunities and other changes in circumstances, slow 

mobility of capital and labor, or barriers to competition. 
2
 Edward Denison identified the movement of labor from low productivity agriculture to high productivity 

manufacturing as a source of US labor productivity growth in the first half of the Twentieth Century, so Nordhaus 

(2002) calls the contribution to growth from labor reallocation “the Denison effect.”   
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This paper presents some alternative ways to handle the labor reallocation effect and some new 

ways to handle the problem of non-additivity of the direct Fisher and chained Fisher indexes. In 

particular, researchers who are interested in certain types of questions have had to give up on 

exact additivity and accept errors of approximation.  This paper develops formulas that are 

suitable for answering those questions and that have virtually no error of approximation.   

Nevertheless, although the new measures developed in this paper have important advantages, 

different questions require different answers, and no single solution is the correct one for all 

purposes.   

II.  Some Approaches from the Literature on Industry Contributions to Aggregate Labor 

Productivity   

The “Traditional” Decomposition and the CSLS Decomposition  

For many years statistical agencies used Laspeyres quantity indexes (and Paasche price indexes) 

to calculate measures of real output, also known as measures of output volume.  This framework 

holds prices constant, so the volume measures are additive.  With additive volume measures, 

deriving additive decompositions of the change in aggregate labor productivity is straightforward.  

Let Zit  be the measure of labor productivity in the arbitrary industry i that is based on Laspeyres 

quantity indexes that use period 0 prices and the Zt be the corresponding measure of aggregate 

labor productivity.  Then: 

 Zt  =  i lit Zit (1) 

A simple formula for decomposing aggregate productivity change into industry contributions 

was called “the traditional decomposition” by de Avillez (2012) and Dumagan (2013) because of 

its long history.  The traditional decomposition is: 

 (Zt – Z0)/Z0 =  i [litZit – li0Zi0]/Z0 

 =  i [li0(Zit – Zi0) + Zi0(lit – li0) + (Zit – Zi0)(lit – li0)]/Z0 

 =  i [(li0Zi0/Z0)(Zit/Zi0 –1) + (Zi0/Z0)(lit – li0) + ((Zit – Zi0)/Z0)(lit – li0)] (2) 

The direct contribution from within-industry productivity growth in the arbitrary industry i is 

given be the first term on the right hand side of equation (2).  The remaining terms in equation (2) 

are known as reallocation effects because they reflect the changes in industry shares of 

employment. The middle term is the static reallocation effect and the last terms is the dynamic 

reallocation effect.   
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If period 0 is the base period for measuring prices then li0Zi0/Z0 in the first term can be 

simplified to wi0 and the direct contribution, denoted by ci  
^D, can be written aswi0g(Zi), where 

g(Zi) is defined as Zit/Zi0 –1.  Substituting wi0  for li0Zi0/Z0 in the other terms of equation (2) 

yields a convenient expression for calculating the traditional decomposition: 

 (Zt – Z0)/Z0 =  i wi0 g(Zi) + wi0(lit/li0 –1) + wi0 g(Zi)(lit/li0 –1) (3) 

A decomposition that de Avillez (2012) terms “the CSLS decomposition” improves on the 

traditional decomposition by modifying the reallocation terms so that they have a useful 

economic interpretation.  The CSLS reallocation terms take into account the comparative 

productivity level of the industry that is receiving or releasing labor resources because the impact 

of the movement of labor on the economy’s aggregate productivity depends on whether 

productivity is higher in the industries where it is redeployed than in the industries that it exited.   

Many papers on industry contributions to productivity growth have used formulas that tend to 

show a fast-growing industry’s reallocation contribution as negative if that industry has a below 

average productivity level and a shrinking industry’s reallocation contribution as positive if that 

industry has a below average productivity level.
3
  An industry that releases labor can be viewed 

as placing that labor in a pool where it is available to any industries, and an industry that absorbs 

more labor can be viewed as depleting the pool that is available to all industries. Using the 

economy’s average level of productivity as a benchmark for measuring reallocation effects is 

therefore reasonable. 

In the CSLS decomposition, the measures of productivity level and growth in the second and 

third terms of equation (2) are expressed as deviations from means.  In the second term in 

equation (2), we can substitute Zi0 – Z0 for Zi0 because  i (lit – li0) = 0.  Similarly, in the third 

term of equation (2), the change in the weighted averages of the productivity levels can be 

subtracted from Zit – Zi0.  If the total contribution of industry i to aggregate productivity growth is 

ci  
^D + ci  

^R, the combined static and dynamic labor reallocation effect ci  
^R is:  

  i ci  
^R =  i [(Zi0 – Z0)/Z0 +  ((Zit – Zi0)–(Zt – Z0))/Z0](lit – li0)  

  =  i [(wi0 – li0) +  (wi0(Zit/Zi0 – 1)– li0(Zt/Z0 –1))](lit/li0 – 1)  

  =  i [wi0 – li0 +  wi0g(Zi) – li0 g(Z)](lit/li0 – 1) (4) 

                                                 
3
 The assumption  behind these formulas is that an industry’s own average productivity Zi0  is a good proxy for the 

productivity of the marginal labor that it releases or absorbs.  Many earlier papers on industry contributions to 

productivity growth use formulas that make a fast-growing industry’s reallocation contribution negative if that 

industry has a below average productivity level and a shrinking industry’s reallocation contribution positive if that 

industry has a relatively low productivity level. See Basu and Fernald (1995), Nordhaus (2002), Stiroh (2002), 

CSLS () and Reinsdorf and Yuskavage (2010). 
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In equation (4) an industry that takes labor from other industries has a positive static contribution 

to aggregate productivity if its productivity level is above average.  It has a positive dynamic 

contribution to aggregate productivity if its productivity growth is above average.  Also, an 

industry that releases labor to be employed by other industries has a positive static contribution 

to aggregate productivity if its productivity level is below average, and it has a positive dynamic 

contribution to aggregate productivity if its productivity growth is below average.   

The GEAD Decomposition of Labor Productivity Change 

Statistical agencies such as Statistics Canada and the Bureau of Economic Analysis no longer 

publish the Laspeyres volume measures that make the traditional and CSLS decompositions 

exactly additive.  Researchers have therefore sought a new formula that is suitable for use with 

the Fisher index volume measures that are now published.  In particular, researchers have sought 

a way to decompose a measure of aggregate labor productivity based on a Fisher or chained 

Fisher volume index into industry contributions that add up to the right total. 

A formula for industry contributions to productivity growth that solves the additivity problem 

created by the use of Fisher indexes was developed by Tang and Wang (2004).  Because the 

formula is applicable to superlative quantity index measures, to chained measures and to 

Laspeyres volume measures, Dumagan (2013) terms it the “generalized exactly additive 

decomposition” or GEAD.   

The GEAD formula normalizes the prices of individual industries by dividing each individual 

price by the deflator used for the top level aggregate.  Let Pit denote the price index for the value 

added of industry i, let Ft be the aggregate price index at time t, and let pit = Pit/Ft.  Similarly, in 

the base period 0, pi0 = Pi0/F0.  In addition, let labor productivity in industry i be  Xit = 

(Yit/Pit)/Lit, where Lit  is a simple sum of hours over all labor types.  Finally let lit = Lit/Lt, the 

share of aggregate labor inputs used by industry i.  Then if Yi is aggregate nominal value added 

in period t, aggregate labor productivity in period t equals Xt  =  (Yi/Ft)/Lt, or, 

 Xt  =  i  pit lit Xit (5) 

The change in labor productivity from period 0 to period t is: 

g(X)  
Xt – X0 

 X0
 

 =  
 i  pit lit Xit

 i  pi0 li0 Xi0
 – 1 (6) 

Now let wi0 = Yit/Yt and note that wi0  = pi0 li0 Xi0 /  j  pj0 lj0 Xj0.  Then  
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g(X) =   i wi0 [(pit/pi0)(lit /li0)(Xit/Xi0) – 1] 

 =  i wi0 [(pit/pi0)(lit/li0)( 1+g(Xi)) – 1] 

 =  i wi0 [(pit/pi0)(lit/li0) – 1)( 1+g(Xi)) + g(Xi)] 

 =  i  (wi0/li0)[(pit/pi0)lit  – li0](1+g(Xi)) +  i wi0 g(Xi) (7) 

The final term in equation (7) is the direct contribution from within-industry labor productivity 

growth.  For the arbitrary industry i this contribution is c i 

D
 = wi0 g(Xi).   

Tang and Wang (2004) break the first term on the right side of equation (7) up into two pieces, 

which I will call the static reallocation effect and the dynamic reallocation effect.  Defining xi0 as 

Xi0 /X0, the relative productivity of industry i in period 0, the total contribution from reallocation, 

denoted by ci 

R
  can be written as: 

 ci 

R
  = (wi0/li0)[(pit/pi0)lit  – li0](1+g(Xi)) 

 =  (wi0/pi0li0)(pit lit  – pi0li0) + (wi0/pi0li0)(pit lit  – pi0li0)g(Xi) 

 =  xi0(pit lit  – pi0li0) + xi0(pit lit  – pi0li0)g(Xi) (8) 

Reallocation of labor towards industry i means that lit  > li0.  Assuming that g(Xi)the 

reallocation contribution will be positive if lit/li0 > pi0/pit  If pit  = pi0 then ci 

R
 is positive when 

the arbitrary industry i is a net recipient of reallocated labor and negative when it releases labor 

to be reallocated to other industries.   

III.  Why seek a New Alternative? 

The GEAD formula is versatile enough to produce exactly additive contributions regardless of 

the type of index that the statistical agency has used to create the output volume measures.   

Nevertheless, it has two features that are undesirable for some purposes.  First, counting above 

average growth in the labor employed by an industry as automatically contributing in a positive 

way to aggregate productivity seems to lack economic meaning.  On the assumption that 

industries with high average labor productivity as measured by xi0  (or xit) also have high 

marginal labor productivity, to show that an industry with a low level of productivity that takes 

labor from a representative average  industry is making a negative contribution to aggregate 

productivity, the formula for the reallocation contribution could be modified by replacing xi0  

with xi0– 1.  Substitution of xi0– 1 for xi0  in of the formula for c i 

R
 would, however, necessitate 
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some further adjustments so that the contributions continue to add up to the correct total;  

 i (pit lit– pi0li0) +  i (pit lit– pi0li0)g(Xi) may not equal 0.   

A second feature of the formula for ci 

R
 is the direct way that a price change can affect an 

industry’s contribution to aggregate productivity growth.  A sufficiently large increase in the 

prices of the goods that an industry produces (or fall in the prices of the goods that it uses as 

intermediate inputs) will cause pit/pi0 to exceed li0/lit , making ci 

R
 > 0.  For example, if there is a 

disruption in the  foreign supply of a product that competes with a domestic industry, the 

domestic industry may enjoy a price windfall that will count as part of its contribution to the 

economy-wide productivity growth.   

Counting a pricing windfall as contributing to productivity growth is inconsistent with the 

abstract definition of productivity growth as an outward movement in the production possibility 

frontier caused by improvements in technology or the organization of production. It is also 

inconsistent with the practical definition of productivity growth as a change in the output 

quantity index in excess of the growth in the input quantity index.   

The difference between the way that an output price increase affects ci 

R
 and the way that a price 

increase affects a superlative quantity index such as a Fisher or Törnqvist index is worth 

clarifying.  In a superlative quantity index, other things being equal, a price rise makes the 

affected good’s average share weight larger, thereby making the index more sensitive to a 

substitution of that good for other goods.  If the quantity of every good has the same growth rate, 

so that there is no substitution, a rise in a price will have no effect on the quantity index.   

In many of the models used in the productivity literature on TFP, productivity gains are inversely 

related to price changes because the cost savings from above average productivity growth are 

passed on to buyers. Thus from the perspective of the TFP literature, including price changes in a 

contribution to productivity change formula is likely to have the effect of canceling out some of 

the productivity gains that are included in the contribution term for within-industry productivity 

growth.  Conversely, sub-par productivity growth may tend to cause above average price 

increases that result in positive reallocation effects in the GEAD framework. 

Diewert (2013, p. 5)) has recently developed a formula that isolates the price effect in the GEAD 

decomposition by breaking apart the pit  and lit  parts of the pit lit  term in the original GEAD 

formula.  This three factor version of the GEAD opens up a route for excluding the real price 

change effect from the reallocation effect.  The sum over all industries of Diewert’s price change 

effect term is usually small in magnitude, so researchers who do not want to include the direct 

effects of price changes in an industry’s productivity contribution can simply exclude the price 

change term from the total contribution of each industry.  After the price change effects are 

excluded the decomposition will no longer be exactly additive, but the error of approximation 

should not be large.  However, below we derive formulas for Fisher measures of change in labor 
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product that are exactly additive and that have more transparent economic interpretations that the 

Diewert (2013) decomposition. 

An Illustration of the Formula Differences using the Business Sector of Canada 

To illustrate the differences between the existing decomposition methods, table 1 presents 

decompositions of productivity growth in Canada across two-digit NAICS sectors between 2000 

and 2010 calculated from data from Statistics Canada’s Canadian Productivity Accounts.
4
 The 

calculations test the CSLS decomposition, the GEAD formula of Tang and Wang (2004), and the 

three-factor version of the GEAD decomposition of Diewert (2013).   

 

The static and dynamic reallocation effect contributions of the CSLS and GEAD formulas are 

not shown in table 1 for reasons of space, but their total can be inferred by subtracting the 

within-industry effect from the overall total effect.  Industry total contributions based on the 

three factor GEAD  are also omitted from the table because they are  exactly the same as the 

ones from the GEAD formula of Tang and Wang (2004).  For the three factor decomposition, 

table 1 shows total industry contributions net of the price change contribution term.  These net 

total contributions might be used by a researchers who wants to exclude direct price effects from 

the measure of contributions to productivity change. 

 

All three methods decompose the compound annual aggregate labor productivity growth rate of 

0.8 percent that Canada experienced between 2000 and 2010. The CSLS decomposition, which 

attributes aggregate productivity growth to productivity growth within each sector and to level 

and growth effects of reallocation of labor across sectors implies that 75 percent of Canada’s 

aggregate productivity growth is the result of within-industry productivity improvements.  The 

GEAD estimates are even more emphatic than the CSLS estimates that improvements in labor 

productivity within sector are the primary driver of aggregate productivity growth in Canada. 

According to the GEAD formula, 103 per cent of aggregate productivity growth can be 

accounted for by within-sector productivity gains because the static and dynamic labor 

reallocation effects are offsetting.  The Diewert (2013) decomposition finds that 81 per cent of 

the growth is the result of rising labor productivity and 21 per cent comes from labor 

reallocation. As anticipated, the overall sum of the real price change contributions is small. 

 

The large differences between the methods start to become apparent when we ask which sectors 

are generating Canada’s productivity growth.  The CSLS decomposition implies that the most 

important sectors for aggregate labor productivity growth over the period were agriculture, 

forestry, fishing and hunting (16.2% of the total growth), manufacturing (18.3%), wholesale 

trade (24.6%), retail trade (16.7%), and finance, insurance, real estate, rental, and leasing (FIRE) 

(17.2%). With the exception of FIRE, the contributions to aggregate productivity from these 

                                                 
4
 I am grateful to Andrew Sharpe and Matthew Calver for these calculations.   
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sectors come mostly from within sector productivity.   The CSLS method also identifies three 

sectors with substantial negative effects on Canada’s productivity growth: mining and oil and gas 

extraction (-7.6%), construction (-6.8%), and administration and support, waste management and 

remediation services (ASWMRS)  (-5.7%).   

 

The GEAD, on the other hand, finds that mining and oil and gas extraction and construction are 

the biggest positive contributors, raising Canada’s labor productivity growth rate by 0.28 

percentage points (35.4%) and 0.44 percentage points (54.7%). This method also identifies three 

sectors as having negative contributions to aggregate productivity growth: agriculture, forestry, 

fishing and hunting (-6.9%), utilities (-0.7%), and manufacturing (-104%). Again, the contrast 

with the CSLS decomposition could scarcely be sharper.  However, in the case of FIRE, the 

GEAD and CSLS contributions are closer to agreement, as the FIRE sector has a sizeable 

positive reallocation effect using either method. 

 

Why do the two types of decomposition disagree so sharply about which sectors are driving 

aggregate labor productivity growth in Canada?   The problem is not the contributions of within 

sector labor productivity; the GEAD gives a generally similar pattern to the CSLS decomposition 

of within sector contributions, albeit not as similar as the Diewert (2013) decomposition.  

Instead, the main source of disagreement seems to be the impact of price changes on the 

reallocation terms of the GEAD.  The role of price changes is evident from the Diewert’s (2013) 

three factor decomposition (though the direct effect of prices shown in table 1 may understate 

their impact because prices changes also enter into several covariance terms in the Diewert 

decomposition.)  In this decomposition, growth in real output prices in the mining and oil and 

gas extraction, construction and manufacturing accounts for 36.9%, 20.8% and -41.4% of 

aggregate productivity growth respectively.   

 

In a decomposition of the change in nominal business sector value added over the same time 

period, these three sectors again stand out because mining and oil and gas extraction and 

construction generate the biggest contributions to nominal aggregate output growth, while 

manufacturing is the only sector that negatively affected aggregate growth (see Table 2).  Indeed, 

the pattern of contributions to nominal output growth closely corresponds to the pattern of 

contributions to productivity growth from the GEAD.  The GEAD formula is general enough to 

work with chained measures of real output growth because it gives an exactly additive 

decomposition regardless of how the aggregate deflators F0 and Ft are specified.  This means that 

it can be used to decompose the change in nominal output per hour of labor input by specifying 

F0 = Ft = 1.  Thus, one way to think of the GEAD formula is as a renormalized decomposition of 

nominal output per hour.    

 

In the case of the mining and oil and gas extraction industry, a substantial part of the difference 

between CSLS and GEAD arises from a large increase in output prices.  In the Diewert (2013) 
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decomposition, the contribution for this industry excluding the price change effect is  –0.01 

percentage points annually, not far from the total contribution using the CSLS formula.  

 

In the case of the manufacturing sector, the CSLS decomposition suggests that labor reallocation 

had very little effect even though the share of labor allocated to the manufacturing sector 

decreased greatly, falling from 20 percent to 14 percent from 2000 to 2010.  One might expect 

such a large amount of labor reallocation to generate a large impact on aggregate productivity. 

Recall, however, that the CSLS decomposition calculates the labor reallocation effect by 

considering how the industry’s level and growth of productivity compare to the mean level and 

growth of productivity: 

 i ci  
^R =  i [(Zi0 – Z0)/Z0 +  ((Zit – Zi0)–(Zt – Z0))/Z0](lit – li0) 

The level (45.86 chained 2007 dollars per hour) and change of productivity (4.57 chained 2007 

dollars per hour) in manufacturing are close to the mean level (43.60) and change (3.60). The 

small sizes of the deviations from the mean imply small contributions of labor reallocation.   

The GEAD and three factor decompositions treat the falling labor share in manufacturing very 

differently from the CSLS formula.  They show large negative contributions to aggregate 

productivity for manufacturing. The three factor decomposition also shows that falling output 

prices (they fell 16 percent over the period) account for a significant part of the very large 

negative reallocation effect for manufacturing in the GEAD.   
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Table 1: Alternative Decompositions of Business Sector Labor Productivity in Canada at the Two-Digit NAICS Level, 2000-2010 

 CSLS GEAD Three Factor GEAD (Diewert, 2013) 

  

Within Sector 
Productivity 

Effect 

Total with 
Reallocation 

Effect Included 

Within Sector 
Productivity 

Effect 

Total with 
Reallocation 

Effect Included 

Within Sector 
Productivity 

Effect 

Direct Effect of 

Change in 

Prices 

Total excluding 
Direct Price 

Effect 

Business sector industries 0.60 0.80 0.84 0.80 0.65 -0.02 0.82 

Agriculture, forestry, fishing and hunting 0.09 0.13 0.11 -0.06 0.08 -0.05 -0.01 

Mining and oil and gas extraction -0.30 -0.06 -0.21 0.28 -0.31 0.29 -0.01 

Utilities 0.00 0.01 0.00 -0.01 0.00 -0.02 0.01 

Construction 0.01 -0.05 0.01 0.44 0.01 0.17 0.27 

Manufacturing 0.19 0.15 0.23 -0.83 0.18 -0.33 -0.50 

Wholesale trade 0.20 0.20 0.23 0.10 0.21 -0.05 0.15 

Retail trade 0.15 0.13 0.17 0.14 0.17 -0.05 0.19 

Transportation and warehousing 0.03 0.03 0.03 0.03 0.03 0.00 0.03 

Information and cultural industries 0.09 0.09 0.10 0.06 0.10 -0.04 0.10 

FIRE 0.04 0.14 0.04 0.20 0.05 -0.09 0.29 

Professional, scientific and technical services 0.06 0.05 0.06 0.18 0.07 0.05 0.13 

ASWMRS 0.01 -0.05 0.01 0.11 0.01 0.03 0.08 

Arts, entertainment and recreation 0.00 -0.01 0.00 0.01 0.00 0.00 0.01 

Accommodation and food services 0.01 0.03 0.02 0.02 0.02 0.01 0.01 

Other private services 0.03 0.02 0.04 0.12 0.04 0.05 0.07 

 

 

 

 

 

Table 2: Contributions to Nominal Business Sector Output Growth and GEAD Contributions to Business Sector Labor Productivity 

in Canada at the Two-Digit NAICS Level, 2000-2010 
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Sector 
Nominal 

GDP, 
2000, 

millions 

Nominal 
GDP, 
2010, 

millions 

Contribution 
to Nominal 

Output 
Growth 

GEAD 
Contribution 

to 
Productivity 

Growth 

Relative 
Contribution 
to Nominal 

Output 
Growth 

Relative 
Contribution 

to 
Productivity 

Growth 

Business sector industries 777008 1150015 48.0 0.80 100.0 100.0 

Construction 47727 113256 8.4 0.44 17.6 55.0 

FIRE 116542 181849 8.4 0.20 17.5 25.0 

Mining and oil and gas extraction 61143 114686 6.9 0.28 14.4 35.0 

Professional, scientific and technical services 48657 86112 4.8 0.18 10.0 22.5 

Retail trade 49230 82555 4.3 0.14 8.9 17.5 

Wholesale trade 51790 81964 3.9 0.10 8.1 12.5 

Other private services 38652 65775 3.5 0.12 7.3 15.0 

ASWMRS 22462 42920 2.6 0.11 5.5 13.8 

Transportation and warehousing 43653 63101 2.5 0.03 5.2 3.8 

Information and cultural industries 31429 49447 2.3 0.06 4.8 7.5 

Accommodation and food services 22219 32157 1.3 0.02 2.7 2.5 

Utilities 26278 35310 1.2 -0.01 2.4 -1.3 

Arts, entertainment and recreation 7087 10970 0.5 0.01 1.0 1.3 

Agriculture, forestry, fishing and hunting 21244 22971 0.2 -0.06 0.5 -7.5 

Manufacturing 188895 166941 -2.8 -0.83 -5.9 -103.8 
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Table 3:  Exact and Approximate Estimates of Aggregate Growth of Labor Productivity in the US from 1998 to 2012 

Percent per Year 

 

 
1999 2000 2001 2002 2003 2004 2005 

Based on official contributions 2.51 1.81 0.69 2.79 2.96 2.54 1.38 

Based on approximated 
contributions 2.48 1.73 0.61 2.80 2.96 2.49 1.40 

 

 

 
2006 2007 2008 2009 2010 2011 2012 

Based on official contributions 0.85 0.32 -0.13 2.56 3.34 0.31 0.56 

Based on approximated 
contributions 0.86 0.32 -0.12 2.52 3.39 0.31 0.59 
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Table 4:  Symmetric Fisher and GEAD Decompositions of Growth of Labor Productivity in the US from 1998 to 2012 

Percentage Points 

Sector  
or  

Industry 

Total Contribution 
Within-Sector Productivity 

Change Contribution 
Reallocation Effect 

Contribution 
Symmetric 
and CSLS 

Fisher GEAD 

Sym-
metric 
Fisher 

CSLS 
Fisher GEAD 

Sym-
metric 
Fisher 

CSLS 
Fisher GEAD 

Total economy 24.71 24.74 26.45 26.82 28.42 -1.75 -2.11 -3.69 

Farms, forestry, fishing 0.48 0.44 0.54 0.56 0.62 -0.06 -0.07 -0.18 

Oil and gas extraction 0.68 1.64 0.05 0.04 0.40 0.63 0.64 1.23 

Other mining 0.26 0.77 0.19 0.19 0.19 0.06 0.07 0.58 

Utilities 0.28 0.31 0.48 0.49 0.55 -0.20 -0.21 -0.24 

Construction -0.63 0.28 -0.81 -0.78 -0.75 0.18 0.15 1.02 

Durable goods manufacturing 
excluding computers 3.13 -1.03 2.83 2.82 2.99 0.30 0.31 -4.01 

Computer and electronic products 3.97 -0.18 4.30 4.40 4.74 -0.33 -0.43 -4.91 

Nondurable Manufacturing 2.00 1.03 1.93 1.97 2.04 0.07 0.03 -1.01 

Wholesale & retail trade 2.58 1.30 2.58 2.57 2.64 0.01 0.01 -1.34 

Transportation and warehousing 0.47 0.56 0.55 0.56 0.64 -0.08 -0.10 -0.07 

Publishing and motion picture and 
sound recording 1.11 0.61 1.27 1.29 1.29 -0.16 -0.18 -0.69 

Broadcasting, data processing, 
telecomm. and internet  2.78 0.57 3.37 3.46 3.53 -0.59 -0.68 -2.96 

Finance 2.72 1.24 2.61 2.62 2.83 0.11 0.11 -1.58 

Real estate, rental and leasing 4.35 4.17 3.86 3.88 3.90 0.50 0.48 0.27 

Professional, scientific, and 
technical services 1.26 3.55 1.03 1.04 1.07 0.22 0.22 2.48 

ASWMRS 1.00 1.21 1.08 1.10 1.10 -0.08 -0.10 0.11 

Educational services -0.43 0.58 -0.03 -0.03 -0.03 -0.40 -0.40 0.61 

Health care and social assistance -0.96 3.04 0.24 0.24 0.25 -1.21 -1.21 2.80 

Arts, entertainment, recreation, 
accommodation, food services -0.62 1.04 0.17 0.19 0.20 -0.79 -0.81 0.85 

Other services, except government -0.57 -0.03 -0.60 -0.60 -0.59 0.03 0.03 0.56 

Government 0.85 3.64 0.81 0.82 0.83 0.04 0.03 2.81 
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IV.  Symmetric Approaches to Measuring Contributions to Aggregate Labor Productivity   

Weights that treat the Time Periods Symmetrically  

Many authors assign an economic meaning to the dynamic reallocation term as a measure of the 

Baumol effect (see, for example, Nordhaus (2002).
5
  Yet from a mathematical point of view, this 

term is present because of an asymmetry in the way that the GEAD and CSLS decomposition 

treat the two time periods.  They use only period 0 as the source of the weights in the term for the 

contribution from within-industry productivity growth (such as the last term in equation (7)).  If a 

version of Irving Fisher’s time reversal test is applied to these decompositions, when the 

comparison is run backwards from period t to period 0, the pattern of industry contributions may 

be inconsistent with the pattern seen when the comparison is run in the normal direction.   

To modify the traditional decomposition to have weights that treat both time periods 

symmetrically, average the labor shares of the two periods and also average the productivity 

levels of the two periods.  Let li
- 

 = (lit+li0)/2 and let Zi
 

 = (Zit+Zi0)/2.  Then, 

 (Zt – Z0)/Z0  =   i [litZit – li0Zi0]/Z0 

 =   i [ li
- 

Zi0[(Zit – Zi0)/Zi0]+ Zi
 

(lit – li0)]/Z0 

 =   i 0.5[wi0(1+lit/li0)g(Zi) + ((Zit /Zt)(Zt /Z0) + Zi0/Z0)(lit – li0)] (9) 

With weights based on two-period averages, the formula for the direct contribution of industry 

i’s productivity index is 0.5wi0(1+lit/li0)g(Zi) and the dynamic reallocation effect term vanishes.    

The reallocation term of equation (9) can be rewritten using deviations from means, as is done in 

the reallocation effect of the CSLS decomposition.   This gives the symmetrically weighted 

version of the CSLS reallocation effect:  

 ci    
^R*  = (lit – li0)0.5[(Zt /Z0)(Zit –Zt)/Zt +(Zi0–Z0)/Z0]. (10) 

Fisher Index Measure of Real Output with Asymmetric Weights 

The Fisher index is defined as a geometric mean of a Laspeyres index and a Paasche index, but it 

can also be expressed as a weighted arithmetic average of a Laspeyres index and a Paasche index.  

Let Qt 

L
, Qt 

P
 and Qt 

F
 be the top-level Laspeyres, Paasche and Fisher quantity indexes, respectively 

                                                 
5
 Baumol hypothesized that over time an increasing share of expenditures would go to products with stagnant 

productivity.  As a result, in the long run, aggregate productivity growth would experience a slowdown. This effect 

came to be known as “Baumol’s disease.”  
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and let  = (Qt 
P)0.5/[(Qt 

P)0.5 + (Qt 
L)0.5] (or, equivalently, (Pt 

P)0.5/[(Pt 
P)0.5 + (Pt 

L)0.5] , where Pt 
P 

and Pt 
L are the Paasche and Laspeyres price indexes.)  Then: 

Qt 

F
  =  

Qt 

L
[Qt 

P
]

0.5
 + Qt 

P
[Qt 

L
]

0.5

 [Qt 

P
]

0.5
 + [Qt 

L
]

0.5   

 = Qt 
L + (1)Qt 

P (11)

By using  to weight on Laspeyres volume measure and 1to weight the Paasche volume 

measure, the Fisher measure of labor productivity can be written as a sum of two productivity 

measures that are themselves additive.    

The CSLS decomposition is exactly additive when a Laspeyres volume measure is used to 

measure the real output used as the numerator of Zit.  To calculate a Laspeyres volume measure 

for the arbitrary industry i, nominal output in time period t is deflated by a Paasche price index, 

denoted by Pit
P.  On the other hand, to calculate the Paasche volume measure for industry i, its 

nominal output in period 0 is multiplied by the industry’s Laspeyres price index Pit
L and then 

normalized by dividing by the aggregate Laspeyres price index, Pt  
L .  The industry’s output in 

period t is then deflated by Pt  
L .    

Let Vi0 be the nominal output of industry i in time 0 (which is also known output in value terms).  

Then the Paasche volume measure of the labor productivity of industry i is:  

 zi0 = Vi0 (Pit
L/Pt  

L)/Li0 . (12) 

In equation (11), the industry price indexes are divided by the aggregate price index to normalize 

the zi0 to have the same weighted average as the Zi0 from the Laspeyres volume framework.  The 

weighted average of the zi0 is aggregate labor productivity measured at the prices of period 0: 

 Z0  =   i  li0zi0. (13) 

The aggregate volume measure for period t based on the Laspeyres price index is: 

zt =  i (Vit/Pt  
L)/ i Lit 

 =  i litzit   (14) 

where zit = (Vit/Pt  
L)/Lit.   Using the fact that Vi0Pit

L /  j Vj0Pjt
L  = wi0Pit

L/Pt  
L  = (li0zi0/Z0)(Pit

L/Pt  
L), 

we have: 
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  (zt –Z0)/Z0  =   i [li0(zit – zi0) + zi0(lit – li0) + (zit – zi0)(lit – li0)]/Z0 

  =  i [(li0zi0/Z0)(zit/zi0 –1) + (zi0/Z0)(lit – li0) + ((zit – zi0)/Z0)(lit – li0)] 

  =  i wi0(Pit
L/Pt  

L)g(zi) +  i [(zi0 – Z0)/Z0 +((zit – zi0)–(zt – Z0))/Z0](lit – li0)    (15) 

We can therefore calculate the direct contribution from the productivity growth in industry i to 

the Fisher measure of aggregate productivity growth as:  

 ci  
~D = wi0 [g(Zi) + (1)(Pit

L/Pt  
L)g(zi)] (16) 

The corresponding formula for the contribution of the reallocation effect to the Fisher measure of 

productivity change is: 

 ci  
~R  = (lit – li0)[[(Zi0 – Z0)/Z0 +  ((Zit – Zi0)–(Zt – Z0))/Z0] + 

                           (1)[(zi0 – Z0)/Z0 +((zit – zi0)–(zt – Z0))/Z0]  

 = (lit – li0)[Zi0 + (1)zi0 – Z0]/Z0  + 

                           (lit – li0)[(Zit – Zi0)–(Zt – Z0) + (1)(zit – zi0)–(zt – Z0)]/Z0 (17) 

 = (lit/li0 –1)[wi0[+(1)(Pit
L/Pt  

L)] – li0]  + 

                           (lit/li0 –1)[wi0(Zit/Zi0 –1) – li0(Zt/Z0 –1)]  

                                        + (1–)[wi0(Pit
L/Pt  

L)(zit /zi0 –1)– li0(zt /Z0 –1)] (18) 

 

Fisher Index Measure of Real Output with Symmetric Weights 

The Laspeyres volume  measure with symmetric weights is shown in equation (9) above.  The 

corresponding Paasche volume measure is: 

  (zt – Z0)/Z0  =   i [ li
- 

zi0[(zit – zi0)/zi0]+ (zit+zi0)(lit – li0)]/Z0 

 =   i 0.5[wi0(Pit
L/Pt  

L)(1+lit/li0)g(zi) +  i 0.5(lit – li0)(zit + zi0)/Z0   

 =   i 0.5[wi0(Pit
L/Pt  

L)(1+lit/li0)g(zi) +  i (lit– li0)(wi0/li0)(zit/zi0 +1)/2 (19) 
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The relative productivity level of industry i compared to the average industry is measured by   

(wi0/li0)(zit/zi0+1)/2.   Using the fact that  i (lit – li0)=0, the last term in equation (19) can be 

written in deviation form as: 

 i (lit– li0)(wi0/li0)(zit/zi0 +1)/2 =   i (lit– li0)[(wi0/li0)(zit/zi0 +1) – (Zt/Z0+1)]/2 

 =   i (lit/li0 – 1)[wi0(zit/zi0 +1) – li0(Zt /Z0+1)]/2 

Combining the Laspeyres and Paasche symmetrically weighted measures gives the 

symmetrically weighted Fisher contribution to growth formula.  The direct contribution to 

aggregate Fisher productivity growth of industry i’s productivity growth is: 

 ci  

D = wi0[0.5(1+lit/li0)][g(Zi) + (1)(Pit
L/Pt  

L)g(zi)] (20) 

The symmetrically weighted version of the Fisher reallocation effect is, then: 

ci  

R = (lit – li0)0.5[[(Zt /Z0)(Zit –Zt)/Zt +(Zi0–Z0)/Z0] + (1)[(zt /Z0)(zit –zt)/zt +(zi0–Z0)/Z0]] 

(21) 

This expression can be simplified to: 

ci  

R = 0.5wi0(lit/li0  –1) [[Zit/Zi0 – Zt /Z0] + (1)(Pit
L /Pt  

L)[zit/zi0 – zt /Z0]] 

 =   i 0.5wi0(Pit
L/Pt  

L)[ (1+lit/li0)g(zi) + (zit/zi0 +1)(lit/li0 – 1)] (22) 

 

V.  Chained Fisher Volume Measures of Productivity Change 

Besides working well with Fisher measures of productivity change comparing two years directly, 

the Tang and Wang (2004) decomposition is flexible enough to be applied to measures of 

productivity change based on chained indexes.  This section shows how to achieve an additive 

decomposition of a chained volume measure with other kinds of decompositions.   

To work with chained volume measures, add a time subscript t to the notation for the 

contributions to denote the contribution to the change from year t–1 to year t.  Also let Qt 

F
 denote 

the direct Fisher quantity index from year t–1 to year t and let Zt denote the index of aggregate 

labor productivity from year t–1 to year t.  The change in aggregate productivity from year t–1 to 

year t is, then,  

[Qt 

F
Vt-1/Lt]/[Vt-1/Lt-1] – 1 = Qt 

F
/[Lt/Lt-1] – 1 
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 =  Zt – 1  

 =  i cit 

D
 + cit 

R .   (23) 

The chained Fisher measure of aggregate productivity change from year t–1 to year t+1, equal to 

ZtZt+1 , then has a change of: 

    [Qt+1

F  
 Qt 

F
 Vt-1/Lt+1]/[Vt-1/Lt-1] – 1 = [Qt+1

F   
 Qt 

F
]/[Lt+1/Lt-1] – 1 

 = [Qt 

F
/(Lt/Lt-1) –1] + [Qt 

F
/(Lt/Lt-1)][ Qt+1

F   
 /(Lt+1/Lt) –1]  

 = Zt – 1 + Zt(Zt+1 –1)   

 =  i cit 

D
 + cit 

R  + Zt(ci¸t+1

D     + ci¸t+1

R   )  (24) 

Similarly,  

     Zt –1 + Zt(Zt+1 –1) + ZtZt+1(Zt+2 –1) =  i cit 

D +cit 

R  + Zt(ci¸t+1

D     +ci¸t+1

R   ) + ZtZt+1(ci¸t+1

D     +ci¸t+1

R   )   (25) 

If we wish to add a third link to the chain, the additive contribution for the arbitrary industry i to 

ZtZt+1Zt+2–1 would be calculated as:  cit 

D
 + cit 

R  + Zt(ci¸t+1

D     + ci¸t+1

R   ) + ZtZt+1(ci¸t+1

D     + ci¸t+1

R   ).  In general, 

additive contributions to chained volume measures are calculated by rescaling the contributions 

to year-over-year productivity change so that they have a common base in the initial time period, 

and then summing over time.  

VI.  Illustration of the Chained Fisher Volume Measures of Productivity Change using 

Data from the US Industry Accounts 

Calculating Fisher Decompositions if Laspeyres and Paasche Volumes are Unavailable  

In practice the statistical agencies that publish Fisher volume measures usually do not release a 

Laspeyres version of the industry output measures. To implement the exactly additive Fisher 

decompositions that are provided in this paper, a researcher would thus have to get access to an 

unpublished level of detail from the industry accounts.  Yet fortunately, assuming that the most 

detailed Fisher indexes that are available are equal to both the Laspeyres index and the Paasche 

index and using the Laspeyres and Paasche index formulas to aggregate these components will 

usually yield very accurate approximations to the above formulas. 

Once the aggregate Laspeyres and Paasche indexes have been estimated by assuming that the 

most detailed Fisher indexes that are available are equal to both the Laspeyres index and the 
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Paasche index and using the Laspeyres and Paasche index formulas to aggregate these detailed 

indexes, the aggregate Laspeyres and Paasche indexes can be used to calibrate .  The 

assumptions also imply that g(Zi) = g(zi), so the weight on industry i in the Fisher 

decomposition can be calculated as wi0[(1)(Pit
L/Pt  

L)].  These procedures can be expected 

to yield a decomposition that has very tiny errors of approximation.   

Applying these procedures to data from the Annual Industry Accounts of the US Bureau of 

Economic Analysis results in errors of approximation that average about 0.01 percentage points 

over the 14 years from 1998 to 2012.  Chaining the official Fisher output measures gives a 

cumulative productivity growth of 24.89 percentage points over these 14 years, while chaining 

the sums of the approximate contributions gives a cumulative productivity growth of 24.71 

percentage points. The exact and approximate aggregate labor productivity figures for each year 

are shown in table 3.  In most years the error of approximation is under 0.05 percentage points.  

Illustration of Chained Versions of the Fisher Decompositions  

In Table 4, data from the US Annual Industry Accounts are used to calculate chained Fisher and 

chained GEAD decompositions for labor productivity change over the years 1998-2012.  Table 4 

reports the results of chaining the Fisher version of the CSLS decomposition, which uses 

wi0[(1)(Pit
L/Pt  

L)] rather than wi0  for the weights.  It also reports the results of chaining the 

symmetrically weighted Fisher decomposition. 

As might be expected based on the results for Canada, the GEAD formula produces large 

negative reallocation effects for manufacturing and the high tech industries of computer 

manufacturing and data processing and telecommunications services.  In the cases of computers 

and other durable goods manufacturing the total contribution to US productivity growth is also 

negative.  As computers are generally thought to be the most important positive driver of US 

productivity growth this is a strange looking result.  On the other hand, the GEAD contributions 

suggest that government and oil and gas extraction made notable positive contributions to US 

productivity growth.  (Government output is generally measured under the assumption that TFP 

growth for the sector is zero, so the positive estimate for government probably reflects a change 

in the composition of the government work force that eliminated many less skilled jobs.) 

On the other hand, the Fisher decompositions show that computer manufacturing and 

manufacturing in general made large positive contributions to US productivity growth, as did the 

data processing and telecommunications industries.  

Finally, comparing the symmetrically weight Fisher decomposition and the CSLS-like Fisher 

decomposition shows that they are not very different.  The sectors with negative reallocation 

effects have estimates that are slightly closer to zero using the symmetric Fisher decomposition, 

which implies slightly lower estimates of the contribution of within-sector productivity growth. 
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VII.  Conclusion 

The GEAD decomposition of Tang and Wang (2004) has been widely used because it provides 

exactly additive decompositions of labor productivity measures based on Fisher and chained 

Fisher volume measures.  This paper illustrates that it can produce anomalous results for 

industries with a rapidly changing output price.  It also develops and illustrates some new 

decomposition formulas for measures of labor productivity  that are based on Fisher or chained 

indexes.  The versions of these measures that are feasible to implement from the published data 

were found to have discrepancies between the sum of the industry contributions and the directly 

calculated measure of aggregate productivity change that were very small, on the order of a few 

hundredths of a percentage point. Furthermore, the Fisher decomposition formulas produce 

estimates of sector and industry contributions to aggregate productive growth with plausible, 

useful economic interpretations.   
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Appendix 

Industry Contributions to Total Factor Productivity in a Growth Accounting Framework 

There are many ways to measure the relative distance between production possibility frontiers 

(PPFs) attributable to growth of TFP, but two of them are especially relevant. Let YF be the vector 

of final outputs, MM be the vector of imported intermediate inputs, and let Lt, Kt and Nt be the 

economy’s endowments of primary factors of labor, capital and natural resources (land) at time t.
6
 

For purposes of exposition, it is convenient to assume that the economy is at a profit-maximizing 

point on its production possibility frontier, which rules out most kinds of disequilibria, and that 

aggregate technology exhibits constant returns to scale.  Define the revenue function Rt(L,K,N;PF, 

PM) as the function that gives the maximum value of  revenue PF· YF – PM·MM achievable at prices  

(PF, PM)  with the technology of period t and primary factor inputs (L,K,N).  Then a measure of 

aggregate TFP based on final period prices and final period inputs is: 

TFP
Allen-Paashe

  = Rt(Lt,Kt,Nt ;P
F
t, P

M
t ) / R0(Lt,Kt,Nt ;P

F
t, P

M
t ) 

      = [Rt(Lt,Kt,Nt ;P
F
t, P

M
t ) / R0(L0,K0,N0;PF

t, P
M
t )] / [ R0(Lt,Kt,Nt ;P

F
t, P

M
t )/R0(L0,K0,N0  ;P

F
t, P

M
t )] 

The Paasche quantity index of GDP provides an upper bound estimate of the total change in 

output: 

(PF
t ·Y

F
t – PM

t ·MM
t )/(PF

t ·Y
F
0 – PM

t ·MM
0)  Rt(Lt,Kt,Nt ;P

F
t, P

M
t ) / R0(L0,K0,N0;PF

t, P
M
t ) 

If technology change has the same proportional effect on output when inputs are (Lt,Kt,Nt) as when 

they are (L0,K0,N0) then: 

Rt(Lt,Kt,Nt ;P
F
t, P

M
t )/Rt(L0,K0,N0  ;P

F
t, P

M
t ) = R0(Lt,Kt,Nt ;P

F
t, P

M
t )/R0(L0,K0,N0;PF

t, P
M
t ) 

Furthermore, if factors of production are paid their marginal revenue product, a Paasche quantity 

index of inputs will provide an lower bound approximation to Rt(Lt,Kt,Nt ;P
F
t, P

M
t )/Rt(L0,K0,N0;PF

t , 

PM
t ).  The Paasche quantity index of output divided by the Paasche quantity index of inputs is than 

an upper bound measure of the theoretical change in total factor productivity given by TFP
Allen-

Paashe
.   

A symmetric analysis shows that under certain assumptions a Laspeyres quantity index of  

TFP
Allen-Laspeyres

 = Rt(L0,K0,N0;PF
0, PM

0) / R0(L0,K0,N0;PF
0, PM

0) 

 = [Rt(Lt,Kt,Nt ;P
F
0, PM

0) / R0(L0,K0,N0;PF
0, PM

0)]/[Rt(Lt,Kt,Nt ;P
F
0, PM

0) / Rt(L0,K0,N0;PF
0, PM

0)] 

                                                 
6
 The time subscript on N could reflect exhaustion or new discoveries of mineral resources, or changes in the amount 

of land usable for agriculture caused by global warming. 
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 = [Rt(Lt,Kt,Nt ;P
F
0, PM

0) / R0(L0,K0,N0;PF
0, PM

0)]/[R0(Lt,Kt,Nt ;P
F
0, PM

0) / R0(L0,K0,N0;PF
0, PM

0)] 

The Laspeyres quantity index of output is (PF
0 ·YF

t – PM
0 ·MM

t )/(PF
0 ·YF

0 – PM
0 ·MM

0).  Under certain 

assumptions, dividing this index by a Laspeyres quantity index for inputs gives a theoretical lower 

bound for the conceptual measure given by TFP
Allen-Laspeyres

.  The Fisher index of TFP then has an 

appealing property as an average of upper and lower bounds for theoretical indexes. 

Aggregate and Industry Level TFP in the Framework of the Domar Decomposition  

Besides the final goods and services included in YF, industries also produce outputs that are used 

as intermediate inputs by themselves or by other industries.  Assuming, for simplicity, that there 

are no taxes on products or tariffs, nominal GDP can be calculated as the sum of the value added 

of every industry.  The Laspeyres (Paasche) volume measure of real GDP can also be calculated as 

the sum of industries’ value added measured at initial (final) period prices.   

The assumption that the economy is operating at a profit maximizing point on the PPF implies that 

at the margin reallocating inputs from one industry to another will not change the value of the 

revenue function. Hulten (1978) showed that in this framework the log change in aggregate TFP 

defined as an outward shift in the PPF can be calculated as a weighted sum of the log change in 

TFP of industries using the weights introduced by Domar (1961).  The Domar weights add up to 

more than 1.  Define Yi0 as the nominal gross output of industry i excluding intermediate inputs 

used within industry i and define G0 as the total value added of all industries. Then industry i’s 

Domar weight wD
i  equals Yi0 divided by aggregate value added G0.  

Let 
G
 be the Paasche index that measures period t prices relative to period 0 prices for G.  Then 

the change in the Laspeyres quantity index for aggregate output, denoted g
L
(G), is:  

g
L
(G) = 

Gt/
G – G0

 G0
 

To define the aggregate quantity index of primary inputs used in the Domar decomposition It we 

must either treat detailed inputs used by different industries as different items, or assume that 

detailed inputs receive the same wage (or returns) everywhere they are employed.  (In inputs in 

different industries are treated as different items in the quantity index of aggregate inputs, when 

labor is reallocated from a low wage industry to a high wage industry, the weight on the increase 

in labor in the high wage industry will be greater than the weight on the decrease in labor in the 

low wage industry and the aggregate input quantity index will rise.)  In addition, it is assumed that 

that an industry’s revenues from sales of output are all used to acquire intermediate inputs or pay 

factors of production.  Thus, if Ji0 denotes the cost of the intermediate inputs that industry i obtains 

from other industries plus the cost of the primary inputs employed in industry i, Ji0 = Yi0. Let the 

Laspeyres measure of the growth rate of aggregate primary inputs I be g
L
(I) = (It/

I – I0)/I0, where 
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
I
 is a Paasche price index for inputs.   Then the Laspeyres quantity index measure of aggregate 

TFP is  

TFP
Laspeyres

 =  
g

L
(G) – g

L
(I)

 1 + gL
(I)

 

  gL
(G) – g

L
(I) 

 =  i w
D
i  [g

L
(Yi) – g

L
(Ji)] 

 =  i w
D
i  TFPi

Laspyres
 (A1) 

In the framework of the Domar decomposition, an industry’s own TFP growth times its Domar 

weight gives its contribution to aggregate TFP growth.   

Index of Labor Inputs that uses Compensation to Weight Industry-Occupation Cells  

In a competitive neo-classical equilibrium, the marginal revenue product of a labor input is equal 

to the amount that the employer has to pay in compensation costs (wage plus benefits and social 

contributions) to employ the labor.  However if labor is treated as a homogeneous input, the 

formula for the contribution of labor reallocation to aggregate productivity growth must assume 

that the marginal product of labor varies in direct proportion to its average product as measured by 

the ratio of real value added to the quantity of labor inputs used.  Furthermore, differences in pay 

levels across industry-occupation cells may reflects differences in training, aptitude and 

experience.  If so, industry-occupation cells should be treated as different kinds of inputs.  When 

this is done, the role of reallocation effects (which are a kind of residual that cannot be explained 

by within-industry productivity growth) may be reduced.   

To calculate a Laspeyres quantity index for labor inputs, let Bit be the nominal wage bill in year t  

(for convenience, we use “wages” as equivalent to compensation costs).  Also, let Wt 
P be the 

aggregate Paasche price index for wages and let Wit 
P  be the Paasche index of wages.  The 

Laspeyres volume of labor inputs at time t is, then, 

B
^

t =  i  Bit/Wit 
P  

 =  i  B
^

it 

 = Bt/Wt 
P (A2) 

Let  b
^

it = bit(Wt 
P/Wit 

P ) = (Bit/Wit 
P )/(Bt/Wt 

P), the share of the aggregate wage bill paid by industry i 

if the wage rates of year 0 had prevailed in year t, and let bi0 = Bi0/B0, the industry i’s share of the 

aggregate wage bill in year 0.  Also, let Z^ it = (Vit/Pit 
P )/(Bit/Wit 

P ), the Laspeyres volume measure of 
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labor input productivity.   Letting Vt =  i Vit be nominal GDP at time t and V^ t = Vt/Pt 
P, the change 

in the aggregate measure of Laspeyres labor input productivity is: 

 
V^ t /B

^
t

V0/B0
 – 1 = (Z^ t –Z^ 0)/Z^ 0 

 =  i [b
^

it Z
^

it – bi0Z^ i0]/Z^ 0 

 =  i [0.5(bi0 +b
^

it)(Z
^

it –Z^ i0) + 0.5(Z^ i0 +Z^ it)(b
^

it –bi0)]/Z^ 0  

 =  i 0.5(1+b
^

it/bi0)g(Z^ i) +  i [0.5(Z^ i0 +Z^ it)/Z^ 0](b
^

it –bi0)  

 =  i 0.5(1+b
^

it/bi0)g(Z^ i) +  i [0.5(Z^ i0 +Z^ it – (Z^ 0 +Z^ t))/Z^ 0](b
^

it –bi0) (A3) 

The contribution to aggregate Laspeyres labor input productivity growth from within-industry 

labor input productivity growth in industry i is: 

 ci
L-D = 0.5(1+b

^

it/bi0)g(Z^ i) (A4) 

The contribution of reallocation of labor inputs to or from industry i to aggregate Laspeyres labor 

input productivity growth is therefore: 

 ci
L-R =[0.5(Z^ i0 +Z^ it – (Z^ 0 +Z^ t))/Z^ 0](b

^

it –bi0) (A5)

  

To derive the Paasche volume index of labor inputs, let Wit 
L  be the Laspeyres index of wages in 

industry i, and let Wt 
L be the aggregate Laspeyres index of wages.  Also, let b

^

i0  be the share of the 

aggregate wage bill that would have been paid by industry i had the prices of period t prevailed in 

period 0: 

 b
^

i0  =  bi0(Wit
L/Wt  

L) (A6) 

Then the labor inputs productivity level of industry i in period 0 measured at prices of period t is: 

 ẑi0  =  
Vi0(Pit

L/Pt  
L)

Bi0(Wit
L/Wt  

L)
  (A7) 

and the aggregate Paasche volume productivity equals: 

ẑ0 = V0/B0 
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 =   i b
^

i0 ẑi0 (A8) 

Now let ẑit = (Vit/Bit)(Wt  
L/Pt  

L), a normalized ratio of value added to total wages in industry i, and 

let ẑt = (Vt/Bt)(Wt  
L/Pt  

L) denote aggregate labor input productivity in period t.  If A0 is the 

aggregate ratio of output to labor inputs measured in current dollars in the base period, the 

aggregate Paasche volume measure of labor input productivity is: 

    
(Vt/Pt  

L)/(Bt/Wt  
L)

V0/B0
 – 1 =  

ẑt – ẑ0 

ẑ0
 

  =  
 i bit ẑit –  b

^
i0 ẑi0

ẑ0
 

 =  i  [0.5(b
^

i0  + bit)( ẑit – ẑi0) + 0.5(ẑi0 + ẑit)(bit – b
^

i0)]/ẑ0  

 =  i 0.5(1+b it/b
^

i0)g(ẑi) +  i [0.5(ẑi0 +ẑit)/ẑ0](b
^

it –bi0)  

 =  i 0.5(1+b it/b
^

i0)g(ẑi) +  i [0.5(ẑi0 +ẑit –(ẑ0 + ẑt))/ẑ0](b
^

it –bi0) (A9) 

 

The contribution to aggregate Paasche labor input productivity growth from within-industry labor 

input productivity growth in industry i is: 

 ci
P-D = 0.5(1+b it/b

^

i0)g(ẑi) (A10) 

The contribution of reallocation of labor inputs to or from industry i to aggregate Laspeyres labor 

input productivity growth is therefore: 

 ci
P-R =[0.5(ẑi0 + ẑit – (ẑ0 + ẑt))/ẑ0](bit –b

^

i0) (A11) 

Finally, we can use  from equation (10) to define Fisher index contributions to aggregate labor 

inputs productivity change.  The direct Fisher contribution of within-industry productivity growth 

is then seen to be: 

ci
F-D = ci

L-D + (1–)ci
P-D 

 =  0.5(1+b
^

it/bi0)g(Z^ i) + (1–)0.5(1+b it/b
^

i0)g(ẑi) 

 =  0.5[1 + b
^

it/bi0)g(Z^ i) + (1–)(b it/b
^

i0)g(ẑi)] (A12) 
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The contribution of reallocation of labor inputs involving industry i to Fisher labor inputs 

productivity is then: 

 ci
F-R = ci

L-R + (1–)ci
P-R 

 = 0.5[[(Z^ i0+Z^ it – (Z^ 0+Z^ t))/Z^ 0](b
^

it –bi0) + (1–)[(ẑi0+ ẑit – (ẑ0+ẑt))/ẑ0](bit –b
^

i0)]] (A13)
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