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Introduction 
Business investment in research and development (R&D) makes a key contribution to rising living 

standards. Firms undertaking the R&D are able to reduce production costs and introduce new products 

that provide benefits to consumers that are not fully captured in selling prices. Further, it is nearly 

impossible for R&D-performing firms to prevent some of the knowledge created from leaking out or 

spilling over to other firms. Since firms do not take these positive spillover benefits into consideration 

when making investment decisions, most governments subsidize business investment in R&D with the 

expectation that economic performance will improve as a result.  

However, not all of the spillover benefits are positive. When firms bring new products to market and 

develop new production processes, the increase in sales can be at the expense of other firms, which 

reduces the spillover benefit of investment in R&D. In addition, firms sometimes compete to be the first 

to develop a particular innovation. The duplication of investment arising from the competition will 

absorb some or all of the social benefits of realizing the innovation. A further concern is that, in some 

circumstances, existing firms have an incentive to over-invest in R&D in order to delay the entry of 

competitors.  

There is a rich empirical literature on the returns to R&D, covering private and social returns as well as 

the gap between the two, which is often described as the external return to R&D. Early analyses 

generally involved case studies, but the dominant approach now is econometric. Researchers typically 

estimate the parameters of a production or cost function that includes the owned stock of R&D, tangible 

capital and labour as inputs along with some measure of R&D that is external to the firm (or sector or 

country) as an additional factor affecting output. The coefficient on the stock of external R&D, or the 

spillover pool, can be used to calculate the external return to R&D. A positive spillover coefficient 

indicates that the social return to R&D exceeds the private return, suggesting that government support 

for R&D would be an appropriate policy response. 

Researchers applying the econometric approach have to address a number of technical issues in order 

to be confident that coefficient estimates are robust. For example, inputs and output are simultaneously 

determined, but obtaining unbiased coefficients from a regression requires that the explanatory 

variables be predetermined. Measurement errors and firm-specific differences in such things as the 

quality of management, product lines and pricing strategies pose additional challenges for researchers. 

Another issue arises if an increase in investment in R&D reflects common technological opportunities. In 

this case, the estimated impact of spillovers on output would be overstated. Further, researchers also 

have to choose between including all firms or just R&D performers in the sample, in which case an 

adjustment for selection bias may be appropriate. When working with panel data sets, researchers have 

to choose between including only continuing firms in the sample (i.e. using a balanced sample) and 

including firms that enter and exit over the sample period.  

The spillover pool is a weighted sum of R&D external to the firm, with the weights chosen to reflect the 

potential for benefiting from R&D performed by others. The wide range of weights that have been used 

in empirical work can be divided, with some simplification, into two categories: those based on 

economic transactions, such as intermediate input transactions, and those based on technological 

proximity, such as patenting activity in the same technology class. Weights based on economic 

transactions are likely to capture a mixture of knowledge spillovers and income transfers arising in part 

due to imperfect price measurement. Unless price indices are adjusted perfectly for quality changes, 
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economic transactions between firms can result in spurious changes in real output and productivity. 

Using weights based on technological proximity is more likely to capture pure knowledge spillovers. It is 

now relatively common to weight external R&D by geographic distance, either as a separate measure or 

as an additional factor applied to other measures of proximity. Most researchers find that spillovers 

decline with distance, although separating pure distance effects from industry clustering effects is an 

issue. Some researchers (e.g. Higón and Antolín 2012) find a role for various measures of cultural 

affinity, such as sharing a common language or legal system, in mediating spillovers. 

Even in the best of circumstances, the coefficient on the spillover pool is an imperfect measure of the 

external return on R&D. The consumer benefits arising from the introduction of new products that are 

not reflected in prices (consumer surplus) are at best partially captured in the econometric framework. 

On the other hand, to the extent that real output is correctly measured, social losses arising from 

“creative destruction”, or the transfer of economic profits among firms due to product innovations, will 

not be captured. 

Hall, Mairesse, and Mohnen (2010) provide a review of the issues surrounding the estimation of the 

private and external return to R&D as well as a comprehensive summary of the empirical literature. 

They report results from 29 studies examining domestic spillovers. Most of these studies report rates of 

return on external R&D, which are easier to compare than the unadjusted coefficient on the spillover 

pool. In addition, rates of return are more relevant to discussions of how much assistance should be 

provided for R&D. The median external rate of return in the 23 studies reporting this information is 29%, 

while the median private rate of return is 20%. We have found a further 12 studies analysing domestic 

spillovers published after the Hall, Mairesse and Mohnen survey. The results from these studies suggest 

an external rate of return of about 27% . 

We have access to a longitudinal data base covering the period from 2000 to 2012 of all firms in Canada. 

We use a standard augmented production function approach in our analysis of spillovers, with real value 

added as the output measure. In this version of the paper, we estimate the production function (in logs) 

for an unbalanced panel of R&D performing firms using ordinary least squares estimators over the 13 

years ending in 2012; the next version will report results using the system General Method of Moments 

(GMM) developed by Blundell and Bond (1998) to address endogeneity of inputs in a dynamic panel 

context. 

Despite the richness of the empirical literature, there are some important gaps that this study attempts 

to fill. First, studies using Canadian data are not abundant. The only study of R&D spillovers using 

Canadian firm-level data was prepared 30 years ago by Bernstein (1988). Second, we define the spillover 

pool using a measure of technological proximity based on firms’ reported expenditure in 28 research 

fields. This approach has a considerable advantage over the more usual approach of defining proximity 

in terms of patenting activities since it allows all R&D performers to be included in the analysis. Third, 

very little of the empirical analysis addresses how the external return to R&D varies by size of firm. We 

calculate separate spillover pools by size of firm, which allows us to assess whether the generation of 

spillovers, and hence the optimal subsidy rate, varies by size of firm. This is an important issue in 

Canada, which along with [6] other OECD member countries, subsidizes R&D performed by small firms 

at a substantially higher rate than R&D performed by larger firms. 

Our empirical results are based on a fixed-effects estimator, which was more consistent with the data 

than the random-effects estimator. We obtain coefficients on the conventional inputs that are 
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consistent with prior notions of income shares and, when R&D capital is included, constant returns to 

scale cannot be rejected. The estimated coefficient on internal R&D capital implies a rate of return of 

approximately 20 per cent, virtually the same as the median in the Hall, Mairesse, and Mohnen (2010) 

survey. Using our preferred measure of the spillover pool, the rate of return on external R&D is 

approximately 37%, higher than the median in the Hall, Mairesse and Mohnen survey but well within 

the range of estimates in the literature. Our estimates suggest that spillovers rise with firm size, 

although the hypothesis of a constant spillover rate by firm size cannot be rejected.     

This paper is organized as follows. The next section presents an extended review of the literature, 

discussing the analytical framework and the econometric issues arising in empirical estimation of the 

returns to internal and external R&D. The section also discusses the definition of the spillover pool and 

summarizes the empirical work on rates of return. The data used in this study are described in the third 

section, which also includes a discussing of how the data were “cleaned” prior to performing the 

empirical work and how the spillover pool was calculated. Our estimation framework and results are 

presented in the fourth section, which is followed by some concluding remarks.  

Literature review 

Analytical framework 
Following Lychagin et al. (2016),a general form of a production function that can be used to analyse the 

private and external rates of return on R&D is set out in equation 1.  

(1)                        

where     denotes output of firm (or industry) i at time t; A, Ω and U determine the level of productivity; 

and X is a vector of inputs. Firm productivity has a systematic component (A) and three random 

elements: aggregate shocks (Ω); firm-specific effects (H); and idiosyncratic shocks with a mean of zero 

(U).  

The function F is most commonly specified as Cobb-Douglas in the recent empirical literature. With that 

assumption and taking logs, a potential estimating equation is: 

(2)                                              

Where lower case letters represent natural logarithms and y is gross output, c is tangible capital, l is 

labour input, m is materials, k is the firm’s internal stock of knowledge capital, and s is the stock of 

external capital relevant to the firm. In empirical work, it is relatively common to use sales as a proxy for 

gross output and to use value added instead of gross output. Hall, Mairesse, and Mohnen (2010) make 

the point that while theory suggests gross output is the preferred measure, practical considerations 

often make value-added the better option. For example, differences in the degree of vertical integration 

among firms cause variations in the materials-output ratio that are difficult to model.  

Following the analysis of Cohen and Levinthal (1989), researchers frequently include a variable to 

capture a firm’s capacity to absorb knowledge created by other firms. The most common approach in 

the literature is to interact the spillover pool with R&D capital or some other measure of the ability to 

absorb outside knowledge, such as the number of R&D professionals employed by the firm. This 

approach can be implemented by re-specifying the output elasticity of the spillover pool as      
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      , where AC is some measure of absorptive capacity, which results in the following estimating 

equation: 

(3)                                                        

Another possibility is to specify the weights used to aggregate external R&D to capture absorptive 

capacity as well as proximity.   

The stock of knowledge capital (R&D) can formally be an element of X or be included in total factor 

productivity, A. If R&D is considered an input, and markets are competitive, γ should equal the income 

share accruing to R&D. The income share of R&D is not observed, so researchers often transform the 

estimated output elasticity to the private rate of return on R&D to assess the plausibility of the 

estimated parameter. Knowledge spillovers are almost always considered part of TFP. 

In empirical work, equation 2 is frequently replaced with a TFP equation (Table 1). TFP can be calculated 

by constructing a productivity index (as in Lychagin et al. 2016) or by subtracting estimated values of 

factor inputs from actual output (Cardamone 2017). TFP is regressed against the variables not 

considered inputs in equation 2. 

If equation 2 is estimated without the absorptive capacity term, the output elasticity of R&D will be the 

same for all firms. Since the marginal product of R&D can be calculated as the product of the output 

elasticity and the ratio of output to R&D capital, an increase in R&D intensity causes the marginal 

product of R&D to decline.1 However, as pointed out by Hall, Mairesse, and Mohnen (2010), firms may 

be operating with different input shares, so it may be appropriate to assume constant rates of return 

rather than constant elasticities, by estimating the rate of return directly. The estimating equation 

relates the change in output (or TFP) to R&D intensity and the ratio of the spillover pool to output 

(among other variables); the coefficients on these variables represent gross rates of return. In empirical 

work, it is common to assume that the economic depreciation rate on R&D capital is zero, and to 

measure R&D intensity using gross investment in R&D.2 Hall, Mairesse, and Mohnen (2010) demonstrate 

that using gross rather than net investment in a firm-level regression is likely to substantially understate 

the true rate of return on internal knowledge capital. The same point applies to the rate of return on the 

spillover pool.  

While a case can be made that assuming a constant rate of return is more plausible than assuming 

constant elasticities and hence a declining marginal product of R&D capital, most recent empirical work 

estimates elasticities. In the Hall, Mairesse, and Mohnen (2010) survey, about a third of the studies in 

the survey estimated elasticities. In the recent spillovers literature summarized in Table 1, only one of 

the 12 studies (Medda and Piga 2014) estimates the rates of return on R&D directly. Hall, Mairesse and 

Mohnen note that the rate of return estimates are less stable than the elasticity estimates, attributing 

this outcome to highly variable ex post returns to R&D.  

An estimating equation is sometimes developed from equation 1 by assuming a translog production 

function. That approach allows the estimated output elasticities to vary with the level of other inputs – 

                                                           
1
 Inclusion of the absorptive capacity term in equation 2 causes inter-firm variance in the output elasticity without 

affecting the finding of diminishing returns to investment in R&D. 
2
 See Donselaar, Koopmans, and others (2016) for a detailed comparison of estimating output elasticities and rates 

of return to R&D. 
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separability can be tested, not assumed. Badinger and Egger (2015), in a multi-country industry-level 

analysis, include both internal and external R&D as inputs, and cannot reject the hypothesis that both 

output elasticities are affected by the level of conventional inputs. Similarly, Aiello and Cardamone 

(2009), working with firm-level data in Italian manufacturing, find statistically significant coefficients on 

the input interaction terms in the translog production function. 

Econometric Issues 
Estimating equation 2, which uses only the within-firm variation in the sample, presents a number of 
econometric challenges. These include simultaneity bias that occurs because inputs are endogenous 

Author Sample Description

Time 

Period Estimator Dependant variable
1

Elasticity 

or rate of 

return

Industry level studies

Acharya (2015) 17 OECD member countries; 28 

industries (22 manufacturing)

1974-

2002

Dynamic OLS Log value added Elasticity

Goodridge, Haskel & 

Wallis (2013)

7 UK industries 1992-

2007

OLS with industry fixed 

effects

Smoothed TFP 

growth rate

Elasticity

Higon (2007) 8 UK manufacturing industries 1970-

1997

Pooled mean group 

(Dynamic heterogeneous 

ECM panel) 

Gross output 

growth rate

Elasticity

Firm level studies

Aiello & Cardamone 

(2009)

Balanced panel of 1203 Italian mfg 

firms (R&D performers only; 

selection bias correction applied)

1998-

2003

3SLS; 1-year lagged 

values as instruments
Log value added

2 

& factor shares

Elasticity

Bloch (2013) Unbalanced panel of all large firms 

and a sample of SMEs in Denmark

1997-

2005

Fixed effects; lagged 

inputs

log value added 

per employee

Elasticity

Bloom, Schankerman 

and Van Reenen 

(2013)

Unbalanced panel of 715 US firms 

that patented at least once 1963 to 

2001.

1981-

2001
Fixed effects;

3
 lagged 

inputs

Log sales Elasticity

Lucking, Bloom & Van 

Reenen (2017)

Unbalanced panel of 1985 US firms 

that patented at least once 1970-

2006

1985-

2015

Fixed effects; lagged 

inputs

Log sales Elasticity

Cardamone (2017) 3516 Italian mfg firms (cross-

section)

2004-

2006

Spatial autoregressive Log TFP Semi-

elasticity

Lychagin et al (2016) 1383 US mfg firms that patented at 

least once 1970 to 2000 

1980-

2000
Fixed effects

4 Log TFP Elasticity

Medda & Piga (2014) 3077 Italian mfg firms in 21 

industries; correction for non-

random R&D performance

1998-

2000

Instrumental variables TFP growth rate Rate of 

return

Ornaghi (2004) Unbalanced panel of approximately 

2000 Spanish mfg firms in 53 

industries

1990-

1999

SYS-GMM Value added 

growth rate

Elasticity

Sena & Higón (2014) 8617 single plants in UK 

manufacturing (unbalanced panel; 

survivorship bias rejected)

1997-

2002

SYS-GMM Log gross output Semi-

elasticity

Table 1: Key Characteristics of Recent Empirical Studies of Domestic R&D Spillovers

1. Unless otherwise stated production technology is assumed to be Cobb-Douglas and real values are obtained using industry deflators. 2. Translog 

production function. 3. R&D used in spillover pools instrumented. 4. Results also presented for GMM and Sys-GMM (with and without common factor 

restrictions) estimators.
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rather than exogenous variables; selection bias if only continuing firms are included in the sample; and 
measurement bias caused by the absence of firm-level prices for output and inputs.3 

Simultaneity bias 

The simultaneity bias arises because firms decide on input levels based on demand and productivity 
shocks that they experience.4 These productivity shocks are not observed by the researcher, but they 
are correlated with input choices. As a result, ordinary least squares (OLS) estimates are biased and 
inconsistent, causing coefficients on labour and materials to be overstated and coefficients on tangible 
and intangible capital to be understated, to the extent that they are positively correlated with the 
variable inputs.  
 
Researchers use various techniques to address simultaneity bias. One approach is to assume that firm-
specific productivity shocks are time-invariant and estimate equation 2 with a fixed-effects estimator. If 
firms are observed over a sufficiently long time period, this approach results in consistent estimates that 
are free of simultaneity bias. Further, if exit decisions are determined by firm fixed effects, this approach 
also addresses selection bias. While fixed-effects estimation can in principle be implemented through 
inclusion of dummy variables, equation 2 is usually estimated in first differences or in differences from 
mean values to eliminate firm-specific effects. This approach tends to increase the problems caused 
when variables are measured with error (Hall and Mairesse 1995).  
 
One way to avoid making the assumption of time-invariant productivity shocks, which justifies use of a 
fixed effects estimator, is to instrument inputs when estimating variants of equation 2. Effective 
instruments must be correlated with the inputs, but not with unobserved productivity shocks, and can 
not enter the production function directly. Potential instruments include input and output prices, and 
variables that shift the demand for output and inputs. However, firm-level price data is not generally 
available and good quality “demand shifters” have been hard to find. As a result, “no clear contenders 
for ‘external’5 instruments have emerged in the production function literature” (Eberhardt and Helmers 
2016, 9). A number of researchers use one-period lags of inputs, ostensibly as instruments, with the 
fixed effects estimator in order to mitigate simultaneity problems (see Table 1). Hall and Mairesse 
(1995) state that in short panels, one-period lagged values of inputs remain correlated with the error 
term. Reed (2015)formally demonstrates that this approach generates inconsistent parameter 
estimates. 
 
Olley and Pakes (1996) develop a consistent semiparametric estimator by using the firm’s investment 
decision as a proxy for unobserved productivity shocks that are correlated with input levels. More 
precisely, a non-parametric function (e.g. a higher order polynomial) of investment and capital is used to 
represent unobserved firm-specific productivity. Selection bias is explicitly addressed by including an 
exit rule in the estimating model. A weakness of this approach is that only observations with positive 
investment can be used, which can cause a substantial loss of efficiency in certain data sets (Van 
Beveren 2012). In order to avoid this limitation, Levinsohn and Petrin (2003a) use intermediate inputs, 
which are more likely to remain positive for all observations, as a proxy for unobserved productivity 
shocks.  
 

                                                           
3
 See Van Beveren (2012) for a detailed review of the econometric issues encountered when estimating firm-level 

productivity equations. 
4
 See Eberhardt and Helmers (2010) for a comprehensive and intuitive review of the issues raised when estimating 

production functions. Eberhardt and Helmers use the term “transmission” rather than “simultaneity” bias.  
5
 That is, instruments that are not lagged variables or lagged transformed variables. 
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A further constraint is dealing with persistence or serial correlation in the data. For example, 
productivity shocks tend to be serially correlated, which induces serial correlation in factor inputs as 
they respond to these shocks. Arellano and Bond (1991) develop a methodology to estimate dynamic 
panel data models with the generalized method of moments (GMM) in order to recover consistent 
estimates of coefficients on inputs. This approach makes use of first-differencing (FD) or difference-
from-means to eliminate individual-specific effects and uses lagged dependent and independent 
variables as instruments to correct for simultaneity. First-difference GMM exploits moment restrictions 
to obtain an optimal estimator of coefficients as the number of firms approaches infinity and the 
number of observations is small and constant. The estimator is developed assuming no serial correlation 
in the error term, so Arellano and Bond propose three tests of the underlying assumption of 
uncorrelated errors. This methodology has been used by a number of researchers examining the returns 
to R&D, with Hall and Mairesse (1995) being an early example.  
 
While first-difference GMM performs better than a fixed-effect estimator, its performance suffers when 
the autoregressive component is moderately high and the number of time series observations is 
moderately low (Blundell and Bond 1998). In these circumstances the finite-sample bias is large and 
simulation studies indicate that coefficients are not precisely estimated. These problems arise because 
the first difference of a persistent or substantially autoregressive series contains little or no information 
as an instrument, so a first-difference GMM estimator would still be biased and inconsistent. It is worth 
emphasizing that with a short panel, inconsistency will not converge to zero as the number of cross-
section observations increases. These weaknesses can be substantially reduced by using an extended, or 
system, GMM estimator that uses information on initial conditions. Estimation involves a combination of 
equations in first-differences with equations in levels (or levels with first differences) to exploit 
additional moment conditions. Based on Monte-Carlo simulations, Blundell and Bond (1998) and 
Blundell, Bond, and Windmeijer (2001)show that the system GMM estimator performs much better in 
the sense that finite sample bias is smaller and precision is greater compared to the standard GMM 
estimator. 
 
The inclusion of lagged dependent and independent variables in GMM estimators implies some 
restrictions on their values. More precisely, the coefficients on the lagged regressors are non-linear 
combinations of the coefficients on their contemporaneous values and the coefficients on the lagged 
dependent variable. The implicit restrictions on their values – usually described as common factor 
restrictions – can be tested. If they are not rejected, the restrictions can be imposed through use of a 
non-linear least squares estimator [in order to improve the precision of the parameter estimates.]6 
 
Although the standard knowledge capital model set out in equation 2 recognizes that productivity is 
endogenous, the estimators discussed above make the simplifying assumption that changes in 
productivity are exogenous to the firm. Firm-level productivity follows a random (first-order Markov) 
process. Doraszelski and Jaumandreu (2013)draw attention to the role of investment in R&D in affecting 
a firm’s productivity. In their approach, productivity at any point in time represents an expected 
component arising from R&D investment and an unexpected component arising from random shocks. 
That is, productivity continues to follow a random process that can be shifted by R&D investment. They 
develop an estimator in the spirit of Olley and Pakes (1996) that makes use of labour demand rather 
than investment demand to proxy firm-level productivity. The functional form of the proxy is derived 
from the first-order conditions for profit maximization. 
 

                                                           
6
 See Eberhardt and Helmers (2010) for a discussion of this point. 
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In the Doraszelski and Jaumandreu approach R&D investment rather than capital enters the estimating 
equations. It is therefore not implicitly assumed that knowledge accumulates linearly (and with 
certainty) in proportion to spending on R&D, or that is depreciates by a fixed amount per period, as in 
the knowledge capital model. The Doraszelski-Jaumandreu model also has the advantage of capturing 
firm-level differences in the response to R&D, so that returns to R&D can be calculated for individual 
firms or for firms arranged in particular groups.7The Doraszelski-Jaumandreu approach has not yet been 
modified to include spillovers. [Explicitly modelling firm-level productivity shocks is clearly of interest, 
but further analysis and reflection is required to determine the advantages of the DJ approach over 
including R&D as a factor input in the production function. If R&D is considered an input and if it does 
affect firm TFP, the impact of unobserved productivity shocks would be diminished.] 
 
While concerns about factor inputs, including R&D capital, being endogenous variables are universal, 
opinions are divided on whether the spillover pool is correlated with the error term. As mentioned 
earlier, it is plausible to assume that the spillover pool is exogenous in a competitive market, since firms 
would undertake R&D without considering the activities of other firms. However, even assuming that 
describing markets as competitive is realistic, firms may vary their spending on R&D in response to 
generally-perceived technological opportunities.8The resulting improvement in productivity could be 
incorrectly attributed to the spillover measure. In the recent literature, only Bloom, Schankerman, and 
Van Reenen (2013) test the exogeneity of the spillover pool. They develop an instrumental variable for 
R&D spending based on firm-specific changes in the user cost of R&D capital induced by tax changes. 
The estimated spillover output elasticity is not statistically different when spillovers are assumed to be 
endogenous rather than exogenous. 
 
Despite the advances in econometrics, the fixed effects estimator finds considerable favour in the recent 
R&D spillover literature. Out of the 9 firm-level studies summarized in Table 1, four use fixed effects 
estimators (with inputs lagged one period), two use the system GMM estimator, two use instrumental 
variables and one researcher uses a spatial autoregressive estimator.  
 
Two of the studies report results for more than one estimator. Bloom, Schankerman, and Van Reenen 
(2013) report results for OLS and fixed effects estimators in addition to the instrumental variable 
approach discussed above. Using the fixed-effect estimator causes the sign on the spillover coefficient to 
change from negative to positive. On the other hand, with the fixed effects estimator the sum of the 
output elasticities falls from .99 to .83.  
 
Lychagin et al. (2016)assess a broader range of estimators. They report results using the Arellano-Bond 
first-difference GMM estimator, the system GMM estimator (with and without common factor 
restrictions) in addition to results using the fixed-effects estimator, which they describe as their baseline 
results. All specifications have econometric limitations but provide similar coefficient estimates for key 
variables. The instruments used in the first-difference GMM estimator have acceptable strength and 
first-order serial correlation is absent. On the other hand, the Hansen test rejects the null hypothesis of 
instrument validity for the Arellano-Bond estimator. The Hansen test is also rejected in the system-GMM 
estimator and the implied common factor restrictions on coefficients. Finally, there is evidence of 
second order serial correlation in the residuals from system-GMM estimation. 

                                                           
7
 The estimation form does not result in an estimated output elasticity or rate of return on R&D. These measures 

have to be calculated using estimated parameters and sample data.  
8
 This is the “reflection problem” noted by Manski(1993). 
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Selection Bias 

Selection bias has several dimensions. The most common issue discussed in the literature is what is 

often described as survivor bias. Firms that survive are likely to be more productive or to have more 

capital than firms that exit. This will cause a negative correlation between the error term and the capital 

input (tangible and intangible, presumably) causing the estimated coefficients on capital inputs to be 

biased downwards in a (balanced) sample that consists of continuing firms only. Potential bias of the 

spillover coefficient is not discussed in the literature, but it is possible that more productive firms, or 

firms that have more R&D capital, would be in a better position to absorb spillovers. 

Olley and Pakes (1996) develop an estimator that explicitly takes account of firm-level survivor 

probability in a framework that also corrects for simultaneity. They obtain significantly different 

coefficients with a balanced panel, but the gains are small when the sample is unbalanced. The system-

GMM estimator can be used with unbalanced panels, [although it appears better results are obtained 

with forward orthogonal differences than with first differences when working with an unbalanced 

sample.] 

Selection issues also arise if the sample consists only of R&D performing firms. In this case the sample is 

no longer random, and the characteristics of firms that choose to invest in R&D may be systematically 

different from firms that do not invest in R&D. The sample may be limited to R&D performers by choice 

or as a result of spillover weighting schemes that implicitly restrict the sample by making the ability to 

benefit from spillovers conditional on performing R&D. Limiting the sample to R&D-performing firms 

would not be problematic if the regression results are used to make inferences about R&D-performing 

firms only. Aiello and Cardamone (2009) work with a sample of R&D performing firms. They address the 

selection bias issue by using a probit model to explain the decision to invest in R&D and use the fitted 

probabilities of investing as instruments when estimating the (translog) production function. Medda and 

Piga (2014)include both R&D performers and non-performers in their sample but use the predicted 

values from a Tobit R&D investment model as instruments for (endogenous) R&D in their TFP equation. 

Restricting the sample to firms that patent their inventions also raises selection issues. Bloom, 

Schankerman, and Van Reenen (2013), Lychagin et al. (2016) and Lucking, Bloom, and Van Reenen 

(2017) restrict their sample to firms that have taken out at least one patent, but do not make any 

adjustment for selection bias.  

Definition of the spillover pool 
Early studies (e.g. Bernstein and Nadiri 1988) defined the spillover pool as the unweighted sum of the 

R&D performed by other firms in the same industry. Bernstein (1988) included pools to capture both 

intra- and inter-industry spillover effects, without weighting any of the outside R&D. It is now virtually 

universal practice to define the spillover pool as a weighted sum of R&D external to the firm, with the 

weights chosen to reflect the potential for firms to benefit from R&D performed by others. Most of 

weighting schemes used fall into three general categories: those based on economic transactions, and 

those based on technological or geographical proximity.  

Weighting schemes based on economic transactions include inter-industry purchases of intermediate 

goods (Cardamone 2017; Goodridge, Haskel, and Wallis 2017), investment in capital goods (Wolff and 

Nadiri 1993), and patent flows between creators and users9 (Los and Verspagen 2000). These weighting 

                                                           
9
 This weighting scheme is often described as the Yale Technology Matrix. 
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methods capture, at least in part, productivity gains transferred from other industries because 

producers were not able to appropriate all their benefits.10 They also capture fictitious productivity 

transfers that arise when quality changes are poorly captured in official price data. 

Measures of technological proximity provide a better indicator of pure knowledge transfers. (Jaffe 

1986a) pioneered the use of patent data to allocate a firm’s R&D spending by field of technology and 

developed a methodology to compare the distribution of spending – the technology position – across 

firms. The methodology restricts spillovers to knowledge transfers between firms operating in the same 

technological fields – knowledge transfers cannot occur between different fields, even if they are closely 

related. Bloom, Schankerman, and Van Reenen (2013) extend the Jaffe methodology to allow spillovers 

between closely-related fields in their “Mahalanobis extension”. In addition, the Jaffe weighting matrix 

is symmetric – knowledge transfers from firm i to firm j are the same as transfers from firm j to firm i. 

Finally, note that under the Jaffe methodology, only firms performing R&D can benefit from spillovers. 

The Jaffe methodology has been used frequently in recent empirical work (Table 2). In addition to the 

study by Bloom, Schankerman, and Van Reenen (2013) already mentioned, empirical work by Aldieri and 

Cincera (2009) and Lychagin et al. (2016) uses the Jaffe methodology, without the Mahalanobis 

extension. Bloch (2013) also applies the Jaffe methodology, but has access to data on R&D spending by 

10 technological fields, which allows him to expand the scope of the analysis from R&D performers that 

patent to all firms that perform R&D. Aiello and Cardamone (2009) also adopt the Jaffe methodology, 

but use human capital weights to develop an asymmetric technological proximity measure. 

The idea that knowledge transfers are affected by distance has considerable appeal. Despite the ease of 

electronic information flows, the opportunity for planned and spontaneous face-to-face meetings, 

which declines with distance, could facilitate knowledge spillovers. It is, however, important to 

distinguish what Lychagin et al. (2016) describe as the “declining contact with distance” from the 

“decreasing relevance with distance” hypotheses. In other words, knowledge transfers that appear to be 

related to geographic proximity may be the result of a grouping of firms with similar technological 

interests. In addition to facilitating knowledge transfers, agglomeration reduces costs by promoting 

better matches of workers and firms and the sharing of intermediate inputs. Confirming the existence of 

geographic spillovers requires isolating knowledge transfers and demonstrating that such spillovers 

exceed what would be expected given the existing distribution of R&D.11 

Jaffe, Trajtenberg, and Henderson (1993) were the first to test for a geographic component of spillovers. 

Their study finds that patent citations are more likely to occur close to where the inventor resides, even 

after controlling for the existing concentration of technological activity. Buzard et al. (2017) obtain a 

similar result using a similar approach but are able to assign patents and citations to clusters of R&D labs 

rather than relying on information on the declared place of residence of the inventor. Bloom, 

Schankerman, and Van Reenen (2013) test for an independent impact of geography by including both a 

distance-weighted index of technological proximity and an unweighted measure as spillover variables in 

their production function. Both measures are statistically significant, which supports the existence of a 

pure distance effect. The sum of the coefficients on the two spillover variables is not, however,  

substantially different from the coefficient on the spillover variable when it enters the equation alone. 

                                                           
10

 Los and Verspagen assume the matrix captures rent spillovers only, which may be too restrictive. 
11

 However, as noted by Jaffe, Trajtenberg, and Henderson (1993) the existing distribution of R&D activity may be 
affected by the potential for knowledge spillovers, so such a test is conservative. 
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Lychagin et al. (2016) report statistically significant coefficients on technological and geographical 

proximity spillover measures when entered in the same equation. However, the interaction of the two 

variables does not add to the explanatory power of the equation, suggesting that there is a distinct 

geographic component of knowledge spillovers. [reference to Lychagin (2016)?] 

In contrast to the above studies finding evidence of a pure distance effect, Orlando (2004) presents 

evidence suggesting that reported knowledge spillovers may instead be the result of general 

agglomeration effects. Orlando examines spillovers in a narrowly-defined industry. He finds that 

spillovers between firms in the same detailed (4-digit) category are not attenuated by distance, but 

spillovers from outside this category are attenuated by distance.  

In order to benefit from knowledge spillovers, firms must have the ability to identify, assimilate and 

exploit the ideas generated by other firms. Cohen and Levinthal (1989) appear to be the first to draw 

attention to the “two faces” of R&D: one to create knowledge and the other to enhance the firm’s 

ability to absorb new ideas developed elsewhere. Despite its intuitive appeal and the typical finding of a 

positive role for absorptive capacity, not all researchers include it in their empirical analyses of 

spillovers.12As stated earlier, absorptive capacity can be modelled as augmenting either the private or 

external return to R&D.  

A variety of measures of absorptive capacity is found in the literature. A number of researchers measure 

absorptive capacity by including the product of R&D intensity and the spillover variable in the estimating 

equation (Kinoshita 2001, Grünfeld 2004). Aldieri and Cincera (2009) re-specify the spillover output 

elasticity to include an interaction with the stock of R&D, instead of R&D intensity. The estimated 

coefficient on the interaction term is positive and statistically significant. The output elasticities of 

internal R&D and the spillover pool are unchanged but including the interaction term substantially raises 

the output elasticity of tangible capital. 

Bloch (2013)uses the share of R&D personnel in total firm employment and the existence of an R&D 

department as indicators of absorptive capacity, interacted with the spillover variable. While the 

coefficient on the interaction terms with technological spillovers is positive and statistically significant, 

the overall output elasticity of the spillover pool does not change from its value when spillovers enter 

without the interaction term. Sena and Higon (2014) use a measure of the quality of the firm’s 

workforce as an indicator of absorptive capacity. When interacted with the spillover variable, the labour 

quality gap has a statistically-significant positive role. The impact is, however, small: the output elasticity 

of spillovers rises 10-15% when interacted with the labour quality variable.  

Ornaghi (2006) hypothesizes that absorptive capacity rises with firm size. She calculates a size-weighted 

intra-industry spillover pool and obtains a small but statistically significant output elasticity. Aiello and 

Cardamone (2009) define the spillover pool using the Jaffe methodology to determine technological 

proximity but impose asymmetric weights by assuming the ability to absorb outside knowledge is 

affected by the level of human capital at each firm. The output elasticity of internal R&D increases 

substantially while the spillover elasticity falls approximately in half when the symmetric measure is 

replaced with the asymmetric version. [In addition, the spillover variable is included as in input in a 

translog production function, so the estimated elasticity varies with the level of the other inputs, which 

implicitly captures absorptive capacity.] 
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 Out of 11 analyses of domestic spillovers published since 2004, only 3 include a measure of absorptive capacity.  
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The spillover variables discussed above are not intended to capture the social loss associated with 

‘creative destruction’ arising from the introduction of new products. A new product generates a social 

benefit because consumers place a higher value on the new product than its production cost. This 

“consumer surplus” is typically shared with firms because the product is priced above its marginal 

production costs -- firms earn rents on new products. Some of this social benefit is at the expense of the 

products that are displaced, and this loss is part of the external return to R&D. These considerations lead 

some researchers (Lychagin et al. 2016) to include a “product market rivalry” spillover measure in the 

production function. However, as pointed out by Bloom, Schankerman, and Van Reenen (2013), product 

market rivalry does not affect production possibilities, so there is no reason to expect it to play a role in 

the production function, provided that output is correctly measured. 

Bloom, Schankerman, and Van Reenen (2013) capture product market rivalry effects on the external 

return to R&D through a separate equation for the market value of firms. In their model, product market 

rivalry raises the private return to R&D without affecting the social return, so the external return on 

R&D is lower when product market rivalry is included in the analysis. 

Empirical estimates of spillovers 
Hall, Mairesse, and Mohnen (2010) presents a comprehensive review of the literature on estimating the 

private and public returns to R&D, including a review of the theory, practical estimation problems and a 

summary of the empirical results. They report results from 29 studies examining domestic spillovers. 

These studies report the output elasticity of the spillover pool, the rate of return on the pool or both. 

The rates of return were estimated directly or calculated from the output elasticity.13Most of these 

studies report rates of return on own and external R&D. In the 23 studies reporting this information, the 

median private rate of return is 20% and the external return is 29%. These are gross (of depreciation) 

rates of return. With a 15% depreciation rate, the median private rate of return appears low. This could 

be the result of the widespread availability of subsidies for performing R&D. This point is discussed in 

more detail below. 

We have found a further [12] studies analysing domestic spillovers published after the Hall, Mairesse 

and Mohnen survey (Table 2).Only one of these studies, Medda and Piga (2014), estimates the rate of 

return directly. Another three studies (Acharya 2015;Bloom, Schankerman, and Van Reenen 

2013;Lucking, Bloom, and Van Reenen 2017) transform estimated elasticities to rates of return. Two 

studies (Cardamone 2017; Sena and Higon 2014) estimate the semi-elasticity of the spillover pool. We 

use information provided by the authors to calculate the private and external rates of return on R&D. 

[The median private and external rates of return in these six studies are 15% and 22.5%, respectively.] 

The remaining six studies estimate output elasticities, which range from near zero to almost 1.5. While 

the level is difficult to interpret, the ratio of the spillover elasticity to the own-R&D elasticity gives a 

reading on the importance of spillovers. The median value of the external-internal ratio of the six studies 

is 2.3. Since the ratio of the elasticities equals the ratio of the rates of return, this result implies that the 

external rate of return is 2.3 times larger than the private return. Using the median private rate of return 
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 The rate of return is obtained by taking the product of the output elasticity and the ratio of output to R&D 
capital. See Donselaar, Koopmans, and others (2016) for a derivation of this result. Researchers use either the 
sample means or medians of output and R&D capital in the calculation. In the more recent literature, Bloom, 
Schankerman, and Van Reenen (2013) and Lucking, Bloom, and Van Reenen (2017) use an R&D-weighted output 
measure.  
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obtained from Table 2, the external rate of return in the six elasticity-based studies would be 34.8%, 

compared to 22.5% in the rate-of-return based studies. Taken together, the median external rate of 

return in the 12 studies is 26.9%. 

A range of estimates for the impact of external R&D is shown for the studies by Acharya and Goodridge, 

Haskel and Wallis. In these industry-level studies, it is not possible to separate intra-industry spillovers 

from the return to internal R&D.[When calculating the ratio of external to internal returns in Acharya, 

we assume the internal return includes intra-industry spillover effects.]Goodridge, Haskel and Wallis 

decompose the output elasticity of inside R&D into its factor share and a second component 

representing elements that raise the elasticity above the factor share, such as deviations from perfect 

competition, increasing returns and spillovers. These two components are shown in Table 2 for 

consistency with other results, but the ratio of external to internal elasticities is calculated assuming 

intra-industry spillovers are all internal, following the authors’ approach.   

Interpreting the return to the spillover pool is not clear-cut when multiple measures are included in the 

same equation. If the measures are not at all correlated, their individual impacts can in principle be 

identified and the overall impact would be given by the sum of the coefficients on the two variables. If 

the two measures are highly correlated, their individual impacts will be difficult to separate and it will be 

difficult to justify summing the coefficients to obtain the overall impact. Aiello and Cardamone (2009) 

take an average of their technological and geographic spillover variables when both measures are 

included in the estimating equation. The coefficient on the average measure is approximately the same 

as when the geographic measure enters alone, which is almost three times larger than the coefficient on 

the technological spillover variable when it appears in the equation. Lychagin et al. (2016) include three 

spillover measures in their equation, capturing technological, geographic and product market rivalry. 

Only the technological and geographical measures are shown in Table 2 since product market rivalry is 

not expected to affect production possibilities. The overall effect shown in Table 2 is the sum of the two 

spillover coefficients. 

Two of the studies summarized in Table 2 provide information on spillovers by size of firm, which is 

useful to have when assessing the desirability of differentiating subsidy rates by size of firm. Some 

considerations suggest that spillovers from smaller to larger firms could be more important than 

spillovers from large to small firms. Small firms tend to perform more R&D related to the development 

of new processes and products while larger firms tend to focus more on improving existing products and 

processes;14 everything else equal this would suggest higher spillovers from smaller firms. Larger firms 

are also likely to be able to make better use of patents and the development of complementary 

technologies to protect their intellectual property. Knowledge transfer resulting from employee 

turnover may also be less of an issue for larger firms. On the other hand, larger firms may perform more 

basic research than smaller firms and are more active in collaborative research, which would favour 

greater spillovers. Finally, it is possible that the quality of R&D rises with the amount of R&D performed, 

which would likely result in spillovers rising with firm size. 
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Intra-

Industry

Inter-

industry

Techno- 

logical 

Proximity

Geograph-

ical 

Proximity

Total 

External

External / 

Internal 

Return 

Industry level studies

Acharya (2015) R&D of the 10 most R&D intensive industries, accounting for 

77% of R&D

No 8.5 to 

21.5

0 to 13 16    16 to 

29

0.7

Goodridge, Haskel & 

Wallis (2013)

Flows of intermediate consumption Yes
2 .017 to 

.117

0 to 0.1 0.21 0.21 to 

0.31

1.8

Higon (2007) I/O based estimates of sectoral flows of technology. No 0.331 0.942 0.942 2.8

Firm level studies

Aiello & Cardamone 

(2009)

Technological proximity: human-capital weighted similarity 

index (asymmetric Jaffe). Geographic: distance between 

capitals of provinces where firms operate. 

Yes 0.105 0.136 0.353 0.348
3 3.3

Bloch (2013) Jaffe technological proximity based on declared field of 

research (10 fields)

Yes 0.198 0.096 0.096 0.5

Bloom, Schankerman 

and Van Reenen (2013)

Jaffe technological proximity based on patenting activity 

(426 categories)

No 20.7 34.3 34.3 1.7

Lucking, Bloom & Van 

Reenen 

Jaffe technological proximity based on patenting activity 

(426 categories)

No 13.6 44.1 44.1 3.2

Cardamone (2017) Technological proximity: intermediate input shares; 

geographic: distance between cities where firms are located.

No 0.9 [8.0] [0] [8.7] 16.7 18.6

Lychagin et al (2016) Jaffe technological proximity based on patenting activity 

(410 categories); geographic based on inventor location.

No 0.005 0.627 0.765 1.392 278.4

Medda & Piga (2014) Sum of industry R&D No 119.7 5.5 5.5 0.0

Ornaghi (2004) Intra-industry size-weighted (6 size categories) Yes 0.098 0.021 0.021 0.2

Sena & Higon (2014) I/O based estimates of sectoral flows of technology. Yes

1. Rates of return in square brackets were calculated by the authors of this study. 2. Tested but not significant. 3. The combined effect is the coefficient on the average of the two spillover measures

Output elasticity  or rate of return on:
1

External R&D
Internal 

R&D

Table 2: Recent Empirical Estimates of Domestic R&D Spillovers

Absorptive 

Capacity 

Modelled

Definition of the spillover poolAuthor



Bloom, Schankerman, and Van Reenen (2013) report that spillovers generated rise with firm size. The 

spillovers generated by firms in the top quartile are almost 75% higher than those generated by firms in 

the bottom quartile. The explanation advanced for this finding is that smaller firms tend to operate in 

technological niches, reducing the scope for knowledge spillovers. The dataset used does not include 

very small firms; the median number of employees in the bottom quartile is 370. 

Ornaghi (2006) investigates spillovers among six employment-size-categories of firms, ranging from 20 

employees or less to 500 or more. In order to distinguish between spillovers generated and received, 

she calculates 11 spillover variables. Ornaghi finds that diffusion occurs more from small to large firms 

than from large to small. Spillovers from small to large firms are up to two times as important as 

spillovers between firms of similar size. Spillovers from large firms to small firms were not statistically 

different from zero, while spillovers from large to medium-sized firms were about half a large as 

spillovers between firms of similar size. The ability to analyse spillovers generated and received by size 

of firm is an important advantage of Ornaghi’s methodology. Her findings suggest that smaller firms 

should receive larger subsidies for performing R&D than larger firms  

Data 

Output and conventional inputs 
The basic data source for our analysis is Statistics Canada’s Longitudinal Employment Analysis Program 
(LEAP) data file linked to corporate income tax (T2) files. The LEAP file uses the statistical enterprise 
concept, which includes all entities controlled by the same corporation as the basis for its longitudinal 
structure. As a result, an enterprise may comprise more than one legal entity filing a tax return. The 
LEAP file is adjusted to eliminate spurious entries and exits caused by mergers, acquisitions and legal 
restructurings.15The other key data source is information from financial statements submitted by firms 
with their income tax return. These data are collectively described as the general index of financial 
indicators (GIFI). They include information on, among other items, the value of sales, costs, investment, 
depreciation and the capital stock.  

We measure output as value-added. It is calculated as the sum of labour income from the LEAP file and 
capital income calculated from the GIFI data. While we would have preferred to calculate both measures 
from the same source, data on employment levels, which is used as the labour input in the production 
function, is only available from the LEAP file. To ensure consistency between employment levels and 
labour income, we also use the LEAP file as the source for labour income. Capital income is calculated 
from the GIFI data, adjusted to exclude R&D expenses that have not been capitalized by firms in order to 
avoid what Hall, Mairesse, and Mohnen (2010) describe as the “expensing bias” – understating capital 
income by calculating it net of what is treated as a balance sheet item. Finally, as recommended by 
(Moussaly and Wang 2014), we make adjustments to ensure that income generated by leased capital is 
attributed to the firm using the capital rather than the owner of the capital.16 

                                                           
15

For example, when two enterprises merge, the new entity is assumed to have existed since the organic birth of 
both enterprises. For legal restructurings that result in enterprises continuing an existing business under a 
different name, payroll data is used to determine if most workers employed by the exiting firm are employed by a 
new firm within an adjacent time period. 
16

 In the GIFI accounts, capital lease payments are recorded as income by the owner of the capital and an expense 
by the user. In order to correctly measure the capital income of the two parties, capital lease income is removed 
from the owner’s account and capital lease payments are treated as capital income of the user.  
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We determine real value added using industry-specific implicit deflators calculated from data developed 
as part of Statistics Canada’s industry productivity database, often denoted as the KLEMS database.17The 
productivity database provides information for 3-digit NAICS goods-producing industries and 2-digit 
service-producing industries.  

We use GIFI balance sheet items to calculate the aggregate net stock of tangible capital for individual 
firms. Firms report the book value of tangible capital in use along with the accumulated depreciation 
charges against those assets. There is no completely satisfactory way to calculate the real value of the 
net capital stock. Book values of the stock and accumulated depreciation are a mixture of historical 
dollars so deflation by any price index will give inaccurate results. We use the industry-specific implicit 
deflators obtained from the industry productivity database to calculate the real net stock of tangible 
capital. 

Ideally, the labour input would be measured by the number of hours worked. Unfortunately, reliable 
firm-level data on hours worked are not available, so we use an estimate of the number of employees 
developed for the LEAP data file. This estimate is developed by taking the ratio of total payroll to 
average annual earnings of a typical worker in the enterprise’s 4-digit industry, province and enterprise 
size class.  

Investment in research and development (R&D)  
We use information submitted by firms in form T661 to claim the federal tax credit for investment in 
scientific research and experimental development (SR&ED) to estimate their spending on R&D. The 
eligibility criteria for the credit are consistent with the definition of R&D set out in the OECD’s Frascati 
Manual. Firms report spending on wages and salaries, materials costs, equipment leasing, equipment 
purchase, expenditures on contracts and “third-party payments” for R&D.18Investment in structures 
used to perform R&D is not reported. We make a series of adjustments to obtain an estimate that 
includes R&D performed in-house for internal use; R&D performed under contract by other Canadian 
firms that the firm can exploit on an exclusive basis; and, R&D performed by third parties in Canada that 
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 This database provides information from 1961 to 2012 for multifactor productivity based on gross output and 
value added. It also provides data on gross output, value added as well as capital, labour and intermediate inputs. 
The database is described in (Baldwin, Gu, and Yan 2007) and the data can be accessed through Cansim table 383-
0032. The acronym KLEMS is used to draw attention to the fact that the database provides information on capital 
(K), Labour (L), energy (E), Materials (M) and services (S) inputs. 
18

 Contracts and third-party payments are distinguished primarily by the degree of control over the performance of 
the R&D exercised by the payer and the right to use the R&D. In a contract, the payer has complete control and 
exclusive use of the R&D while in a third-party payment, the performer has control over the performance of the 
R&D and the payer has non-exclusive rights to exploit the results of the R&D. 

Box 2: The Research and Development in Canadian Industry Survey 

R&D spending estimated from the tax data differs in coverage from Statistics Canada’s survey 
program Research and Development in Canadian Industry (RDCI) which is, on balance, a slightly more 
comprehensive source. The main differences between the two data sources are: 

 The RDCI includes spending on buildings and land, which are not in the tax data because such 
spending is not eligible for the SR&ED investment tax credit. However, in 2014, the first year 
such information is publicly available, spending on buildings and land amounted to just .4% 
of total R&D spending. 

 The RDCI includes spending by firms that do not claim the SR&ED, either because they 
choose not to or because they are not-for-profit enterprises.  

 The RDCI includes information on R&D purchased by Canadian firms from non-residents.  

 As of 2008, the tax data includes, in certain circumstances, R&D performed by a foreign 
affiliate/subsidiary outside of Canada. 

In principle, the RDCI would be a better source of R&D spending than the tax data. However, starting 
in 2014 the RDCI shifted from a census to survey approach. As a result, it will not be possible to 
construct a complete longitudinal data set of firms performing R&D after 2013, which makes the 
RDCI a less interesting source to use over the longer term. 
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the firm can exploit on a non-exclusive basis.  

Depreciation and the stock of knowledge capital 

Data on firm-level spending on R&D are available from 2000 to 2012. The real value of spending on R&D 
stock of R&D is calculated using the aggregate deflator for R&D developed in the system of national 
accounts.19 This deflator is based on the real average wage rate of R&D personnel. In order to calculate 
the net stock over this period, we need an estimate of the stock in 1999 and knowledge of the 
depreciation rate. The standard approach in the literature to estimating the initial capital stock is to 
assume that R&D investment grows at a constant firm-specific rate gi and that the knowledge capital 
loses value at a constant firm-specific rate δi (Hall 2005). With these assumptions, the stock of 
knowledge capital at time t for firm i can be calculated as follows:  

            
   

     
 

where      is a measure of the equilibrium level of investment in R&D by firm i. It is calculated as the 
average level of investment over the three years ending in 2002. The equilibrium growth rate of R&D by 
firm i is calculated as the average growth rate of R&D over the entire sample period. 

The above equation can only be used with confidence for firms that have been in existence and 
consistently performing R&D for long enough that their initial investment is fully depreciated by 2000. In 
the literature, a 15% depreciation rate is typically assumed, although the evidence is accumulating in 
favour of a higher rate. Huang and Diewert (2011) develop a model that incorporates imperfect 
competition and in which R&D is a technology shifter rather than an input to the production process. 
Estimating this model with US data, they obtain a depreciation rate of 29% for R&D undertaken in 
manufacturing. The results are described as preliminary. Li (2012)develops a forward-looking profit 
model to estimate depreciation rates for R&D undertaken in 10 US industries. The rates range from 10 
to 43%, with only one estimate below 15%. 

Hall (2005) makes the point that the depreciation rate used will not have much impact on the estimated 
parameters of a production function if gi and δi are relatively stable over time. In this case, differences in 
the level of rates can be captured in firm fixed effects in the regression equation so the elasticity of 
output to the stock of knowledge capital will be little affected.20 As a result, we make the conventional 
assumption that knowledge capital depreciates at 15% per year.  

Firms can be identified in the T2-LEAP data base from 1984 forward. With a 15% depreciation rate, the 
value of R&D performed in 1984 would have fallen by about 93% by 1999. We therefore apply equation 
1 without any adjustments to firms born in 1984 or earlier. For firms born after 1984 but before 2000, 
we multiply equation 8 by the ratio of the firm’s age to 16 when calculating the initial capital stock. For 
firms born in 2000 or later, the initial capital stock is set to zero. 

Double-counting of R&D inputs 

Starting with Schankerman (1981), there is a long tradition in empirical work estimating the rate of 
return on R&D of correcting for the “double-counting” of R&D inputs.21 The argument is that the 
tangible capital and labour used to create R&D capital are also included in the conventional inputs. We 
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 The deflator can be calculated from information presented in Cansim table 037-0007. 
20

 On the other hand, the net returns to own and external R&D, which are calculated from the estimated elasticity, 
are affected by the depreciation rate.  
21

See for example, Cuneo and Mairesse (1983), Hall and Mairesse (1995), Peeters and Ghijsen (2000), and Hall, 
Mairesse, and Mohnen (2010). 
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are not persuaded that this correction is necessary. To see our point of view, it is useful to think of 
output as consisting of consumer and capital goods. The existing capital stock and labour are used to 
produce both types of output and the newly-produced capital becomes an input when it is available for 
use. The current labour input is always being used to produce output, so adjusting it to eliminate the 
labour used to create the capital asset would not be appropriate.22There is an exact parallel for R&D 
prepared under contract for another firm: output of the performing firm rises and the R&D capital of the 
purchasing firm increases. When a firm performs R&D in-house, its output rises when the expenditure is 
made, whether the R&D is capitalized or not. 

This line of argument draws attention to the fact that newly-produced tangible and intangible capital 
may not be available to produce output in the period they are created. Li (2014, page 11) reports an 
average lag of two years between performing R&D and receiving revenue from investment in R&D for 
the US economy. Such a gestation lag suggests that only a small portion of current-period R&D will be 
used to produce output. Some tangible capital will also be in process over an extended period before it 
becomes available to produce output. As a result, lag structures on capital inputs should be explored 
when estimating production functions.  

Data cleaning 
Our first step in cleaning the data was to remove any observations for which value added, tangible 

capital or employment (proxied by an average labour unit) is negative or zero. In addition to eliminating 

obvious measurement errors, this step removes firms with no sales and highly unprofitable firms. We 

also removed all observations for which R&D capital is negative but set observations with zero value to 

one so that they could be included in a production function estimated in logs. 23The number of 

observations after this step ranges from 18,000 to 28,000 annually over the 2000-12 period; the number 

of unique firms in the panel is about 38,000.  

The next step in cleaning the data was to check for influential outliers by estimating equation 2 with 

robust least squares. We did not detect any influential outliers in this step. However, since the ratio of 

output to R&D capital (evaluated using mean values) is used to transform estimated output elasticities 

into rates of return, we also examined the impact of outliers on this statistic. In the full sample, which 

consists of R&D performers only, the ratio of output to R&D capital is approximately 12. To test the 

sensitivity of this ratio to outliers, we examined the impact of removing successively larger slices of the 

tails of the distribution for value added, tangible capital and R&D capital. With a 0.5% cut-off, the output 

to R&D capital ratio falls to just under eight. Subsequent .5%-point increases in the threshold had much 

smaller impacts on the ratio, so we used the 0.5% criteria to trim the data. 
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 Note also that when R&D is considered a capital rather than a current expenditure in the Canadian system of 
national accounts, adjustments are made to eliminate the “expensing bias” but no adjustments are made for 
double-counting the inputs used to create R&D. 
23

 We also included a dummy variable indicating observations with zero capital stock. 
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The trimmed dataset is characterized by a large number of small firms accounting for a small share of 

the R&D performed in the economy and a small number of large firms accounting for a large share of 

the R&D performed. Firms in the bottom quartile account for less than 5% of total R&D performed while 

firms in the top percentile account for 40% of R&D performed (Table 3). To investigate whether these 

small firms have an impact on estimated coefficients that could be considered disproportionate relative 

to their share of R&D, we estimated the augmented production function with the trimmed sample and 

with successively larger slices of the smallest firms removed. The only coefficient affected by this 

process was on spillovers generated by small firms. This coefficient became statistically different from 

zero when firms with less than one employee were removed but remained stable when more smaller 

firms were trimmed from the sample. These mini-firms, which account for 1% of all firms and less than 

.1% of R&D performed, were dropped from the regression sample. 

Constructing the spillover pool 

Technological proximity 

In this paper, we use two measures of technological proximity. The now-standard approach developed 

by Jaffe (1986) defines technological proximity by comparing the distribution of R&D spending by 

technological category across firms. If there are   technology areas, the technology position of firm   can 

be characterized by a vector         
           where     is the fraction of firm  's total research 

expenditure devoted to area  . The proximity of firm   and firm   can be measured as the uncentred 

correlation of firms’ technological positions: 

         
        

      
   

   
   

 

where    is the transpose of  . 

The proximity measure (a scalar) has the following properties: it is unity for firms whose position vectors 

are identical; it is zero for firms whose position vectors are completely unrelated, or orthogonal; and, it 

is bounded between 0 and 1 for all other pairs.  

Bloom, Schankerman and Van Reenen (2013) introduce the “Mahalanobis extension” to overcome the 

restriction that knowledge transfers cannot occur between different fields, even if the fields are closely 

related. This extension allows spillovers between different technology areas by weighting the standard 

Jaffe measure by the closeness of different technology areas. The proximity of technological areas is 

based on how frequently they coincide within firms in the sample. For example, if many firms spend 

money on research in technology area   and   at the same time, then   and   would have a correlation 

coefficient that is close to 1. 

This weighting scheme implies that firms with diverse research areas benefit from outside R&D to a 

greater extent than under the standard Jaffe method. A firm operating in several research fields has 

Size Percentile Range Share of Total R&D (%) Mean Employment
1

<25% 4.8 3.4

25%<x<90% 54.7 30.0

90%< 40.5 511.5

1. Average labour unit. See text for definition.

Table 3: Share of total R&D Stock by Firm Employment Size 2000-2012
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lower potential spillover benefits using the standard methodology because diversity reduces the size of 

each element of its position vector. 

A technical description of the two proximity measures used in this paper is provided in the Appendix. 

Measuring technological proximity 

Since 2008, firms have been required to report spending by field of research when applying for R&D tax 
credits. Information is presented for four major categories, 28 sub-categories (represented by a 3-digit 
code) and 145 detailed technological fields (represented by a five-digit code). Having access to such data 
is unusual: to our knowledge, Denmark is the only other country that gathers such information, and only 
one researcher (Bloch 2013) has exploited it. Defining technological proximity in terms of R&D spending 
has a considerable advantage over the more usual approach of defining proximity in terms of patenting 
activities since it allows all R&D performers to be included in the analysis. 

We constructed Jaffe-inspired technological proximity measures using 3 and 5-digit field codes, with and 
without the Mahalanobis extension developed by Bloom, Schankerman, and Van Reenen (2013) 
discussed above. We also constructed separate spillover pools generated by small and large firms. Firms 
receiving the federal enhanced SR&ED investment tax credit were classified as small and those firms 
receiving the regular credit were classified as large.  

The quality of the data on spending by technological field is good. About 65% - 78% of R&D performers, 
representing 90% - 98% of R&D spending, provided complete information over the 2008-12 period. A 
small number of firms provided enough information to allow us to develop completely satisfactory 
measures of their spending by technological field.24 As a result, our technological proximity measures 
cover approximately 95% - 98% of R&D spending on average over the 2008-12 period. When we extend 
the calculation back to 2000, the share of firms captured in our proximity measure falls since we cannot 
perform the calculation for firms that exited prior to 2008. However, the share of R&D captured remains 
above 90% - 95% over the 2000-07 period.  

Nevertheless, extending the technological proximity measures to the 2000-07 period will provide useful 
results only if firms change research fields slowly over time. This is a plausible hypothesis since expertise 
in various areas is not easily acquired and involves large sunk costs. Bloom et al. (2013), compare results 
when proximity is measured using data over the whole sample (1963 to 2001) and using data from 1970 
to 1980. The results are described as reasonably similar because firms changed research fields only 
slowly over time. In our sample, we observed that firms tend to operate in the same small number of 
fields over the 2008-2012 period;25 they rarely enter a new field.  

Estimation framework and results  
In this version of the paper, we report results from estimating variants of equations 2 and 3 using 

ordinary least squares. The next version of the paper will explore the impact of using alternative 

econometric approaches, particularly General Method of Moments estimators. The baseline equation is 

reproduced below. 

                                                   

                                                           
24

 We can calculate spending for firms that submit incomplete or missing spending by project provided that they 
are working in a single technological field. We cannot make approximations for two categories of firms: those for 
which field codes are missing, invalid or provided only for a subset of projects underway in a given year; and those 
working in more than one field providing complete field codes but incomplete expenditure data by project.  
25

 On average over the 2008-12 period, firms undertook research in 1.33 fields. 
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In equation 2’, y is value added, c is tangible capital, l is the labour input (employment, proxied by 

average labour units), k is R&D capital, s is the spillover pool, η represents aggregate productivity 

shocks, proxied by year dummies, ω captures time-invariant firm-fixed effects and u is a random error. 

All variables are in logs.  

We began our empirical investigation by estimating equation 2’ over the 2000-12 period for an 

unbalanced sample of R&D performers and using the Jaffe proximity weights calculated using five-digit 

technology field codes. While our dataset is adjusted for the effects of mergers, acquisitions and legal 

restructurings, entries and exits remain a potential source of selection bias, prompting us to work with 

an unbalanced panel. Our sample is restricted to R&D performers primarily because our modelling 

framework assumes that only R&D performers can benefit from spillovers. We experimented with 

industry dummy variables and industry-level value-added (as in Bloom, Schankerman, and Van Reenen 

2013), but these variables had little impact on the results and were dropped from subsequent 

regressions.  

The choice of estimation period involves a trade-off between measuring the R&D stock with error and 

reducing the efficiency of the fixed-effect estimator by shortening the length of the panel. As discussed 

above, initial stock of R&D for firms entering prior to 2000 is only an approximation, but the starting 

value becomes less important over time as a result of depreciation. For example, by 2010 about three-

quarters of the imputed value of R&D capital in 2000 has been depreciated, causing the potential 

importance of measurement error to decline substantially. On the other hand, the efficiency of the fixed 

effect estimator falls dramatically as the length of the panel shrinks from 13 to 3 years. This loss in 

efficiency occurs because the fixed effect estimator uses variations over time within each firm rather 

than variations between firms.  

The output elasticities for labour and tangible capital obtained at this stage were consistent with prior 

notions of income shares. In addition, the sum of the coefficients on all three inputs was not significantly 

different from one. That is, the hypothesis of constant returns to scale could not be rejected, a finding 

that was repeated in all equations subsequently estimated. We also used a random-effects estimator 

but conducting a Hausmann test led us to reject the null hypothesis that the unique errors are not 

correlated with regressors (i.e. reject the null that the random effect estimator is preferred). As a result, 

all of our subsequent econometric analysis is based on the fixed-effects estimator.  

A surprising result at this stage was a negative and statistically significant coefficient on the spillover 

variable. While R&D performed by competitors could have negative effects on profits by destroying 

rents, a direct negative effect on productivity would not be expected. Similarly, firms may compete in 

research effort to be the first to bring an innovation to market, but this would be more likely to show up 

in a lower return to own R&D than a direct negative impact on productivity from R&D performed by 

other firms.  

One possible explanation for the negative coefficient is that the distribution of R&D spending by detailed 

technological field is not stable over time, so that the spillover variable is calculated with error, causing 

the coefficient to be biased towards zero. If changes in the composition of R&D spending are affecting 

the spillover coefficient, we would expect the output elasticity of own R&D to be affected as well. When 

we shortened the estimation period by starting in 2004, the spillover coefficient changed sign while 

remaining significantly different from zero, but the output elasticity of internal R&D was not affected. 

Further, when we calculated technological proximity using 3-digit field codes (28 instead of 145 
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categories) we obtained a positive coefficient on the spillover pool for both estimation periods. While 

we use proximity measures based on 3-digit field in all subsequent regressions, we plan to analyse the 

impact of switching to a more aggregate proximity measure in the next version of this paper using GMM 

estimators, which provide more consistent coefficient estimates when working with short panels.26 

Results based on the 3-digit proximity measure are summarized in Table 4. When we use the Jaffe 

measure of technological proximity to define the spillover pool, the internal and external output 

elasticities are similar in size.27 Allowing spillovers between firms operating in closely-related fields (the 

Mahalanobis extension) rather than requiring firms to be operating in identical fields (Jaffe 

methodology) raises the output elasticity of external R&D by about 60%. The output elasticity of own-

R&D is not affected by allowing greater scope for spillovers.  

                                                           
26

 A concern with aggregating technology fields may be that it would increase measured proximity and hence have 
a direct impact on the spillover elasticity. However, aggregation does not necessarily increase the proximity 
measure since we are normalizing the correlation by the standard deviations of technology position vectors. For a 
discussion see Bloom, Schankerman, and Van Reenen (2013, Appendix C.1). 
27

 Without firm fixed effects, the output elasticity of own-R&D is about five times larger than shown in Table 4, 
which implies an implausibly large income share for R&D capital. 

Dep. Var: Ln(value added) (1) (2) (3)

Proximity measure (3-digit) Jaffe Mahalanobis Mahalanobis

Ln(Employment) 0.684 0.684 0.681

(0.004) (0.004) (.004)

Ln(Tangible Capital) 0.236 0.236 0.235

(.002) (.002) (.002)

Ln(R&D Capital) 0.025 0.025 0.0162

(0.002) (0.002) (.002)

Ln(SpilloverPool) 0.029 0.047 0.043

 (0.009)  (0.011) (.011)

Ln(SpilloverPool)*(R&D Capital) 7.33E-10

(9.16e-11)

Table 4: Production Function Regression Results using a Fixed-Effects Estimator

(Estimated using an unbalanced sample of R&D performers 2000-12)

The Jaffe proximity measure requires that firms operate in the same technoloical field for spillovers to occur; 

the Mahlanobis exttension allows spillovers among closely-related fields. All regressions include firm and year 

fixed effects along with a dummy variable for observations where the stock of R&D capital is zero 

(coefficients not shown). Coefficients in bold italics  have p<.01; in bold p<.05; in italics  p<.10. Standard 

errors, which are clustered by firm, are in parentheses. The number of observations in all regressions is 

296,841.
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The estimated elasticities imply a private rate of return on R&D of about 20% (Chart 1). This rate of 

return is approximately the same as the median value of estimates reported by Hall, Mairesse, and 

Mohnen (2010), which is slightly higher than the median obtained from six more recent studies 

summarized in Table 2. As mentioned earlier, a gross private rate of return to R&D of around 20% 

implies a low rate of return for investors in the context of a 15% depreciation rate. The prevalence of 

R&D subsidies likely contributes to the low market rate of return to investors. The estimated/calculated 

rates of return represent marginal ex post rates of return to R&D. Over the longer term, ex post and ex 

ante rates of return will coincide, so the estimated/calculated rates of return approximate the required 

gross rate of return on the marginal investment in R&D. The required gross rate of return is net of 

subsidies.  

Almost all members of the Organisation for Economic Co-operation and Development provide 

substantial tax incentives for performing R&D. In 2017, the median tax-based subsidy rate for large firms 

was 14.8% (Lester and Warda 2018) and many countries offer subsidies delivered through spending 

programs as well. In Canada, the combined federal-provincial tax-based subsidy rate for all firms 

averaged more than 30% of the user cost of capital over the 2010-2012 period (Table 5), suggesting that 

the private incentive to undertake R&D is substantially understated by the estimated rate of return.  
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Chart 1: Private and External Rates of Return to R&D With Alternative Spillover Measures
(95% Confidence Intervals)
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The implied external rate of return on R&D ranges from about 23% to about 37%, depending on how 

technological proximity is measured (Chart 1). The result using the standard Jaffe measure of proximity 

is slightly below the median result of the existing studies surveyed. While the rate of return obtained 

using the Mahalanobis extension is substantially higher than the median, it is well within the range of 

estimates obtained.28  

Column 3 of Table 4 shows the impact of including a measure of absorptive capacity when technological 

proximity is calculated using the Mahalanobis extension. The absorptive capacity term is captured by 

interacting the log of the spillover pool and the level of own-R&D. With respect to equation 2’, this is 

implemented by re-specifying the output elasticity of spillovers as           , which results in the 

following estimating equation: 

(3’)                                                     

We obtain a positive and statistically significant coefficient on the interaction term, which indicates that 

the ability to benefit from external R&D rises with the level of internal R&D performed.29 However, the 

coefficient is very small and its impact is not quantitatively important: including the interaction effect 

causes the spillover elasticity to vary by plus or minus .001 as firm R&D (Ki) ranges from the top to the 

bottom 5% of the sample. Our qualitative finding is consistent with results in the empirical literature, 

although few studies model absorptive capacity exactly as we have done. Our formulation follows 

Aldieri and Cincera (2009) who obtain a positive coefficient on the interaction term. Jaffe (1986b) 

interacts the log of internal R&D with the log of the spillover pool and obtains a positive coefficient. 

Most other studies use measures other than internal R&D when testing the importance of absorptive 

capacity. Note that unless the interaction term is developed by re-specifying the output elasticity, it 

cannot be derived from the production function.  

The results summarized in Table 6 provide a perspective on whether spillovers vary by size of firm. If 

small firms generate more spillovers than larger firms, there would be a strong case for providing higher 

                                                           
28

 The median rates of return on internal and external R&D are calculated using estimates from the studies 
included in the Hall, Mairesse, and Mohnen (2010) survey as well as the estimates shown in Table 2.  
29

 We also experimented with an alternative approach in which the internal R&D output elasticity was re-specified 
as           , which gave an interaction term between the log of internal R&D capital and the level of the 
spillover pool. In this case the coefficient on the interaction term was negative, implying that the productivity of 
internal R&D declines as external R&D rises. We are reviewing possible explanations for this unexpected result.  

Federal Provincial
1

Combined
2

SMEs 35.0 13.3 43.6

Other firms 20.0 6.3 25.0

All firms
3

25.1 8.6 31.6

1. Expenditure-weighted sum of provincial statutory rates.

3. Weights were developed from federal tax expenditures by firm type.

Table 5: Federal and Provincial SR&ED Investment Tax Credit Rates 

(2010-12 in percentage) 

2. The base for the federal credit is reduced by the amount of provincial assistance provided.
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subsidies for small firms, as is done in Canada and several other OECD member countries. We tested this 

hypothesis by including separate pools for spillovers generated by small and large firms in the regression 

equation. Firms eligible for the federal enhanced SR&ED investment tax credit were classified as small 

while all other firms were classified as large. For both measures of technological proximity we find that 

the coefficients on spillovers generated by small firms are significantly different from zero at the 10% 

level while the coefficients on large firm spillovers are significant at the 1% level. The correlation 

between the two measures is .3 over the 2000-12 period, so there is little reason to be concerned about 

the precision of the coefficient estimates. While the point estimates of the coefficients indicate that 

spillovers generated rise with firm size, we cannot reject the hypothesis that the two coefficients have 

the same value at the 5% significance level. Note that the overall spillover elasticity implied by the 

results for small and large firms is lower than the base-case elasticity.  

Our finding supports results in Bloom, Schankerman, and Van Reenen (2013), which, based on a sample 

of publicly-listed US firms, found a statistically significant positive relationship between spillovers and 

firm size. While the comparison is not exact, our finding contrasts with that of Ornaghi (2006), who, 

working with Spanish data, found that spillovers from small to large firms were more important than 

spillovers from large to small. 

Our preliminary results do not offer any support for the proposition that small firms generate more 

substantial spillovers than large firms. Since the optimal subsidy rate rises with the spillover rate, this 

finding weakens the case for providing higher subsidies for small firms. However, there is some evidence 

that small firms respond more strongly to R&D incentives than larger firms, so preferential treatment of 

small firms could still be justified.30 

                                                           
30

 [See Lester (Forthcoming) for a brief summary of this literature.] 
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As discussed above, there are a number of considerations that suggest spillovers should fall with firm 

size. In contrast, Bloom, Schankerman, and Van Reenen (2013) report that small firms operate in 

“technological niches” that limit the applicability of their research to other firms. This channel of 

influence is not a factor in our results: the technological proximity indexes we calculated do not vary 

substantially by size of firm.31 The higher subsidy rate available to small firms could be influencing the 

result. The combined federal-provincial subsidy rate on R&D performed by small firms is almost 19 

percentage points higher than the rate for larger firms. As a result of this differential, the “hurdle rate” 

for undertaking an R&D project will be substantially lower for smaller firms. While a low (net of subsidy) 

private return does not necessarily result in a low external return, projects with low commercial value to 

the performing firm may not provide useful knowledge to other firms either. An additional factor 

influencing the result is that small firms appear to perform less basic research and more experimental 

development than larger firms.32 Spillovers are generally thought to be higher for basic research than for 

other forms of R&D.  

Conclusion 
This paper makes three contributions to the extensive literature on R&D spillovers. First, it provides 

estimates of the rate of return to external R&D using recent firm-level data for Canada. The most recent 

estimates were prepared thirty years ago by Bernstein (1988) and only covered selected manufacturing 

industries. Second, this paper makes use of data on R&D spending by technological field to calculate 

technological proximity measures. This approach has a considerable advantage over the more usual 

approach of defining proximity in terms of patenting activities since it allows all R&D performers to be 

included in the analysis. Third, we calculate separate spillover pools by size of firm, which allows us to 

assess whether the generation of spillovers varies by size of firm. 
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 The aggregate indexes for large and small firms have very similar values over the 2008-11 period, although the 
measure is slightly greater for larger firms; in 2012, the small firm measure is slightly greater than the measure for 
larger firms. 
32

 Presently, we can only calculate the share of firms performing basic research by size of firm. 

Dep. Var: Ln(value added) (1) (2) (3) (4)

Proximity measure (3-digit) Jaffe Jaffe Mahalanobis Mahalanobis

Ln(Employment) 0.684 0.684 0.684 0.684

(0.004) (0.004) (0.004) (.004)

Ln(Tangible Capital) 0.236 0.236 0.236 0.236

(.002) (.002) (.002) (.002)

Ln(R&D Capital) 0.025 0.025 0.025 0.025

(0.002) (0.002) (0.002) (.002)

Ln(SpilloverPool) 0.029 0.047

 (0.009)  (0.011)

Ln(SpilloverPool_small) 0.014 0.021

.007 .009

Ln(Spillover pool_large) 0.023 .038

.007 .009

Table 6: Production Function Regression Results using a Fixed-Effects Estimator

(Estimated using an unbalanced sample of R&D performers 2000-12)

The Jaffe proximity measure requires that firms operate in the same technological field for spillovers to occur; the 

Mahlanobis exttension allows spillovers among closely-related fields. All regressions include firm and year fixed effects 

along with a dummy variable for observations where the stock of R&D capital is zero (coefficients not shown). 

Coefficients in bold italics  have p<.01; in bold p<.05; in italics  p<.10. Standard errors, which are clustered by firm, 

are in parentheses. The number of observations in all regressions is 296,841.
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Our preferred measure of the spillover pool indicates that the rate of return on external R&D is about 37 

per cent, which is higher than typically found in the literature. However, when spillover pools generated 

by large and small firms are included in the regression equation, the implicit aggregate spillover rate 

declines. More importantly, the point estimates on the spillover pools imply that the rate of return on 

external R&D rises with firm size, although the difference is not statistically significant. This finding 

substantially weakens the case for subsidizing R&D performed by small firms at a higher rate than R&D 

performed by larger firms, as is done in Canada and several other OECD member nations. 

These results are preliminary. They are based on a fixed-effects estimator applied to a relatively short 

panel. We may therefore obtain different results in the next version of the paper when we will use first-

difference and system-GMM estimators.     
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Appendix: Measures of Technological Proximity 

The Jaffe proximity measure  
Denote   = the total number of firms  

Denote   = the total number of technology fields 

Define a technology position vector for firm   across   technology fields.  

                       

where     is the share of technology field   in the total R&D expenditure of firm  . Let     denote the 

total R&D expenditure of firm  . Then, we have           
 
  and     
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Stacking    for all   vertically… 

    
       

   
       

 

     

 

Note that the Jaffe proximity measure is essentially an uncentered correlation coefficient for a given pair 

of technology position vectors. Therefore, in the next step, we normalize each element by the standard 

deviation of the corresponding technology position vector.  

 

     

 
 
 
 
 
 
 
   

     
       

   
     

      

   
   

     
       

   
     

      

 
 
 
 
 
 
 

     

 

 

                

 

   

 
 
 
 
 
 
   

    
      

       
       

   
    

      
       

         

 
 
 
 
 
 
 

     

 

 

Replace the diagonal of   with zeroes to exclude self-influence. 
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   contains the standard Jaffe proximity measure between firms.  

Mahalanobis normed proximity measure 
Define a vector containing the distribution of technology   across   firms.  

                       

Stacking    for all   vertically… 
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  can be interpreted as the standard Jaffe proximity measure defined for technology fields. 
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Similarly, we replace the diagonal of    with zeroes to exclude self-influence.    is an       matrix that 

contains the Mahalanobis normed proximity measures defined for firms.  
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