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Abstract

This article reviews recent evidence and projections on the impact of Artificial Intel-

ligence (AI) on productivity growth, with a focus on G7 economies. Drawing on OECD

work and related studies, it synthesizes a range of estimates, suggesting that AI could raise

annual total factor productivity (TFP) growth by around 0.3–0.7 percentage points in the

United States over the next decade. Projected gains in other G7 economies are up to 50

per cent smaller, reflecting differences in sectoral composition and assumptions about the

relative pace of AI adoption. The article compares alternative modeling approaches and

explores key mechanisms underpinning these projections. It also discusses risks —such as

market concentration, algorithmic collusion, and Baumol effects as well as upside potentials

related to innovation, skills, and trade integration through AI-driven efficiency gains.

Reviving sluggish productivity growth is
a crucial issue for most advanced economies
(Goldin et al., 2024; André and Gal,
2024). This article discusses the poten-
tial of Artificial Intelligence (AI) to sig-

nificantly impact productivity and growth
in the medium term, drawing on previ-
ous OECD work (Filippucci et al., 2024a,
2024b and forthcoming) as well as other
recent literature. Using the framework in
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by Christophe Andre, Manuel Betin, Flavio Calvino, Alain De Serres, Jonathan Haskel, Asa Johansson, Cecilia
Josa-Lasinio, Tomasz Kozluk, Alvaro Leandro, Giuseppe Nicoletti, Paul Peltier, Alvaro Pereira and Daniel
Rock. The views expressed in this article are solely those of the authors and should not be interpreted as those
of the Organization for Economic Co-operation and Development (OECD) or its member countries. Filiz Unsal
is the Head of Structural Policy Research Division, OECD. Peter Gal is a Senior Economist and Deputy Head of
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these studies, we first provide an assess-
ment of the predicted contribution of AI
to growth in aggregate total factor produc-
tivity (TFP) growth over the next decade
in G7 economies. We then review the risks
and opportunities that could cause the im-
pact of AI on productivity growth to vary,
either amplifying or reducing it.

Our references for the expected impact of
AI on productivity are the headline projec-
tion in Filippucci et al. (2024a) and (Filip-
pucci et al., forthcoming), which estimates
that AI could contribute between 0.3 and
0.7 percentage points to annual aggregate
TFP growth in the United States over the
next decade.2

The predicted impacts across different
scenarios are highest in the United States,
followed by the United Kingdom, Germany,
Canada, France and Italy, and lowest in
Japan. These figures indicate that Gener-
ative AI will likely be an important source
of aggregate productivity growth over the
next 10 years but also clarify that the ex-
pected gains from the current generation
of AI technologies may not be extraordi-
nary.3 For comparison, the latest tech-
nology driven boom linked to information
and communication technologies (ICT) has
been estimated to have contributed up to
1-1.5 percentage points to annual TFP
growth in the United States during the
decade starting in the mid-1990s (Byrne et

al., 2013; Bunel et al., 2024).
These growth projections are larger than

those provided by Acemoglu (2024) but
also significantly smaller than some of the
more bullish predictions of other authors
that have been widely discussed (see Chart
1). For instance, Briggs and Kodnani
(2023) give an optimistic view based on
their large aggregate productivity growth
estimates, amounting to around 1 percent-
age point TFP boost per year. In contrast,
the assessment by Acemoglu (2024) is more
cautious. Using a task-based aggregation
framework and Hulten’s (1978) theorem, he
suggests that AI will only allow 0.07 per-
centage points of additional TFP growth
per year. Aghion and Bunel (2024) and
Misch et al. (2025) use the framework in
Acemoglu (2024) but rely on different as-
sumptions from the literature to arrive at
numbers that are in between but closer to
the optimistic end of the spectrum (around
0.7 percentage points boost to TFP).

AI’s impact on productivity and its de-
velopment trajectory entail both upside
and downside risks. On the downside,
anti-competitive outcomes in the provi-
sion of AI can hamper access to afford-
able, high-quality AI services (André et
al., 2025; Filippucci et al., 2024b; OECD,
2024). We also highlight concerns around
AI-powered business models that exploit
behavioural biases or enable tacit price col-

2 Filippucci et al. (2024a) lays out the conceptual framework to gauge the aggregate productivity gains from AI,
building on Acemoglu (2024), and Filippucci et al. (forthcoming) updates the results based on more recent
evidence on AI adoption rates.

3 Further breakthrough innovations in AI technology are possible and could lead to greater gains over our pro-
jection horizon. Future technological developments may also alter the nature of AI technology and how it
interacts with capital and labour to generate productivity gains, especially if significant progress towards Arti-
ficial General Intelligence is realized (Trammell and Korinek, 2023). While forecasting the pace and trajectory
of technological advancement in AI is clearly of great importance, it goes beyond the scope of this article.
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Chart 1: AI’s Predicted Aggregate TFP Gains Across Different Studies (in percentage
points, annualized)

Note: When the source presents a range of estimates as the main result, the lower and upper bounds are
indicated by dashed areas. In cases where modelling predictions primarily focus on labour productivity, TFP is
obtained using simple assumptions about the aggregate capital multiplier (Acemoglu et al., 2023; Aghion et al.,
2017; Bergeaud, 2024). The estimates refer to the countries shown in brackets.
Sources: See references at the end of the article; for Goldman Sachs (2023), the underlying reference is Briggs
and Kodnani (2023); for IMF (2024) the underlying reference is Rockall et al. (2025); for OECD, the
underlying reference is Filippucci et al. (2024a).

lusion (OECD, 2018 and 2021), as well
as broader risks such as the misuse of AI
in malicious activities (Acemoglu, 2024;
OECD, 2025) and the threat of Baumol’s
growth disease, where the relative rise of
non-AI impacted, low-productivity growth
sectors dampen overall GDP growth (Filip-
pucci et al., 2024a; Baqaee and Farhi, 2019;
Nordhaus, 2008). On the upside, AI can
drive productivity gains through faster re-
search, innovation and hence technological
progress (Aghion et al., 2017; Calvino et
al., 2025b); by fostering skill development
(Cheon et al., 2025; Mollick et al., 2024);
and by boosting trade through lower trade
costs and transmitting efficiencies along
global value chains (WTO, 2024).

In what follows, we first explain and

compare our conceptual framework to
other approaches regarding the modelling
of the impact of AI on aggregate productiv-
ity growth. In section two, we then review
micro-level drivers of productivity gains in
this framework, discuss our interpretation
of the available empirical evidence, and the
assumptions we will derive from this evi-
dence. Next, we examine several aspects
that are outside of our framework that can
constitute upside and downside risks to our
quantitative assessment. Important ques-
tions around AI, such as the implications
for inequality or the consequences of fur-
ther advances in AI technology towards Ar-
tificial General Intelligence (AGI) are delib-
erately kept outside the scope of this arti-
cle.
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Conceptual Framework

An Economic View of AI Systems:
Inputs and Outputs

According to the OECD,
“an AI system is a machine-based sys-

tem that, for explicit or implicit objectives,
infers from the input it receives how to gen-
erate outputs —such as predictions, con-
tent, recommendations, or decisions —that
can influence physical or virtual environ-
ments. Different AI systems vary in their
levels of autonomy and adaptiveness after
deployment” (OECD, 2023c).4

Building on this definition, and given
this article’s focus on productivity implica-
tions of AI, we propose conceptualizing AI
systems as a form of production technol-
ogy, combining various inputs to generate
productive capabilities (Figure 1). These
capabilities then allow AI-using firms to
increase their productivity by improving
their production processes and other busi-
ness activities. For instance, AI as a con-
tent creator can be employed in the audio-
visual and broadcasting sector to more ef-
ficiently generate animations and graphics
for videos, harnessing industry-specific tan-
gible and intangible capital (e.g. studios,
network infrastructure, expertise, reputa-
tion) alongside labour (e.g. graphic design-
ers, journalists). In this context, “more ef-

ficiently” means that identical input quan-
tities can produce superior-quality outputs
(e.g. visuals that are more engaging or en-
joyable for the audience) or a higher vol-
ume of output (e.g. creating more videos
of equivalent quality employing the com-
pany’s labour and capital, in the same
amount of time).

The operations of AI systems rely on a
few key intangible and tangible assets, of-
ten complementary to each other (Corrado
et al., 2021). Among intangible inputs,
skills are critical (e.g. highly trained IT en-
gineers, programmers and data scientists).
Another critical input is software, in the
form of AI models. Such software often re-
quires vast quantities of data , which is the
third key intangible component. Data can
take various forms and can enter the sys-
tem at various phases: either during the
development phase of AI, which typically
requires large-scale training data used prior
to deployment, or for its actual use phase
(post-deployment), when additional data
may be used by the AI model to execute
a query.

Turning to physical (tangible) inputs,
the most important inputs are comput-
ing power and connectivity. Advanced
AI systems require top performance semi-
conductor chips or specialized comput-
ing infrastructure not only during the
initial, mostly developmental phase (pre-
deployment), but also in actual operation,

4 Other definitions in the literature are focused on the comparison with human capabilities. For instance: “AI is
a loose term used to describe a range of advanced technologies that exhibit human-like intelligence including
machine learning, autonomous robotics and vehicles, computer vision, language processing, virtual agents, and
neural networks.” (Furman and Seamans, 2019) or “AI is an umbrella term that refers to a computer system
that is able to sense, reason, or act like a human.” (Brynjolfsson et al., 2025). Recent work jointly carried out
by computer scientists and economists writes: “Artificial intelligence (AI) refers to the science and engineering
of building digital systems capable of performing tasks commonly thought to require intelligence, with this
behaviour often being learned rather than directly programmed” (Sastry et al., 2024).
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Figure 1: AI as a Production Technology (provided by upstream firms)

Note: *Positive feedback loop refers mostly to the training, pre-deployment phase. For ease of exposition
regarding the main economic features and implications of AI systems, the terminology may differ from reports
with a more technical focus, notably OECD (2023b).
Source: Author’s elabouration, building on OECD, 2023b, and Sastry et al., 2024.

during the use phase (post-deployment).5

Maintaining such high computing power re-
quires an intensive use of energy, another
critical input. Finally, high-speed connec-
tivity is necessary especially for performing
user-model interactions during final use of
AI (i.e. inference phase).

The output of AI systems is a set of
productive capabilities. Current AI sys-
tems can carry out or assist with cogni-
tive tasks, such as creating content (text,
program code, visuals, etc.) or with tak-
ing decisions based on sophisticated pre-
dictions, recommendations and optimiza-
tion (Agrawal et al., 2023b). When com-
bined with robotics – machines equipped

with sensors and fine motor capacities, in-
cluding not only humanoid robots but au-
tomated assembly lines – they can also per-
form physical tasks, as in the case of au-
tonomous vehicles.

Based on their functioning and out-
puts, a useful distinction can be made be-
tween more recent Generative AI on the
one hand, and prediction, optimization or
decision-oriented AI on the other hand.
We call the latter non-Generative AI, of-
ten referred to pre-Generative AI or predic-
tive AI. Non-Generative AI primarily re-
lies on explicit algorithms and probabilis-
tic models to make low-dimensional predic-
tions and recommendations, based on more

5 See Russo et al. (2025) for a discussion and measurement of cloud compute capacity relevant for AI.
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simple machine learning models. Gener-
ative AI systems are instead mainly de-
signed to produce more complex and multi-
dimensional output, i.e. content, such as
text, program code, images, videos, or
sounds in response to natural (human) lan-
guage queries, or prompts. Large Language
Models (LLMs) fall under this category,
with ChatGPT by Open AI being a key
example. Generative AI systems are en-
abled by the “transformer” architecture de-
veloped in 2017, which are more efficient
than their predecessors (recurrent neural
networks) because they can process natu-
ral language input in parallel rather than
merely in sequence, thus effectively reduc-
ing training and computing time. This
breakthrough allowed for exponential in-
creases in scale and complexity, with the
most refined models featuring billions of
parameters.6

As shown in Figure 1, most current AI
systems are characterized by a positive
feedback-loop, that is, self-improvement
capacity or learning that can lead to
better performance. On the one hand,
self-improvement may occur while being
trained, that is optimizing and fine tuning
the model parameters without yet changing
the basic design of the AI model itself (e.g.,
pricing algorithms). On the other hand,
sometimes this process occurs continuously,
while in actual use (technically called infer-
ence phase). A distinct future possibility
is that self-improvement of AI becomes so

important that it leads to a singularity or
Artificial General Intelligence (AGI), which
is usually defined as an AI that surpasses
human-level intelligence on nearly all cog-
nitive domains.

AI as a Production Technology for
Users

While Figure 1 outlines the key inputs
for the production of AI technologies, a
related yet distinct question concerns how
these technologies influence the production
of goods and services in industries that
have integrated AI into their production
processes. Following recent technological
developments, a distinction emerged in the
AI value chain, with upstream firms spe-
cializing in developing AI technology, par-
ticularly increasingly powerful and complex
foundational models, while downstream
firms adopt these technologies to enhance
their productivity (André et al., 2025).7

For downstream firms, the primary cost
is the initial investment needed to suc-
cessfully integrate AI in their production
processes (e.g. curating firm-specific data
and acquiring skills to tailor and apply AI
tools), which can result in slower adoption
rates. In turn, the marginal user costs of AI
appear to be very low relative to prospec-
tive gains, with the quality-adjusted cost of
AI falling fast (André et al., 2025). Hence
in the next section, we model the impact of
AI on downstream firms as a pure produc-

6 As an additional distinction, some Generative AI models are considered “foundation” models, given their
broad applicability in a range of fields, as opposed to tailor-made models targeting a specific task. Besides
sophisticated text and software programme code, foundation models can produce sounds, images or video.

7 In addition, a set of intermediaries often leverages foundational models to develop more specific AI-powered
services, for instance customer service bots, search engines, collabouration tools, etc.
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Table 1: Comparing AI to Selected Previous General Purpose Technologies (in percentage
points, annualized)

Steam Engine and
Electricity

Computers and Inter-
net

Artificial Intelligence

Nature of Tasks Pri-
marily Affected

Physical Cognitive routine and
communication

Broad range of cognitive
and complex

Autonomy & Self-
Improvement

Cannot operate indepen-
dently from humans

Limited autonomy but not
self-improving

Potentially autonomous
and self-improving

A Method of Inven-
tion

No Yes Yes

Source: Adapted from Filippucci et al. (2024a), building on Lipsey et al. (2005) and Agrawal et al. (2023a).

tivity shock that augments the efficiency
of the users’ production function, allowing
firms to produce more output for a given
amount of inputs.

In particular, and in contrast to some
of the previous literature, we view AI as
a transformative technology that can im-
prove the joint productivity of labour and
capital inputs, i.e. as a technology that
increases total factor productivity (TFP).
In other words, in our view, AI should
not be seen merely as a tool for reducing
labour costs, but instead jointly enhancing
the productivity of workers and the capi-
tal used in production (e.g. computers, of-
fice equipment, office space). For instance,
the AI-driven time savings in writing tasks
documented in Noy and Zhang (2023) im-
ply reductions not only in labour input but
also in the use of capital services per com-
pleted task. Therefore, we conclude that
AI-induced time savings can be interpreted
as total factor productivity gains.8 Fur-
thermore, it cannot be ruled out that AI
improves even gross-output based TFP, by
increasing the efficiency of how intermedi-
ate inputs are combined with capital and
labour. This could occur, for example, if
AI optimizes production chains, facilitates

trade and supply chains (Ahn et al., 2024),
or boosts sales through improved market-
ing and customer service (Hartmann et al.,
2023; Guerron-Quintana et al., 2024; Ni et
al., 2024).

The Impact of AI on Aggregate Pro-
ductivity

The rapid advancement of AI has
sparked debate about its potential to be
a technology that significantly impacts ag-
gregate productivity growth. Historically,
these technologies are often the so-called
general-purpose technologies (GPTs), de-
fined by three key characteristics: (1) per-
vasiveness, i.e. widespread adoption across
diverse industries; (2) continuous improve-
ment, i.e. ongoing improvements in perfor-
mance and capabilities and; (3) innovation
spawning, i.e. the ability to stimulate in-
novation in products and processes (Lipsey
et al., 2005).

A number of studies evaluates the pos-
sibility that AI can be considered a GPT
and provide general support for the idea
based on emerging evidence, although note
that AI is yet to be fully rolled out (Baily
et al., 2025; Agrawal et al., 2023a; Calvino

8 Supporting evidence comes from the US Census Business Trends and Outlook Survey (BTOS) AI Supplement,
which reported that by early 2024, the share of firms using AI to “perform operations previously performed
by existing equipment or software” was roughly three-quarters of those using it to “perform tasks previously
done by employees,” suggesting AI enhances the productivity of both labour and capital.
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et al., 2025b). Table 1 compares the char-
acteristics of AI to previous GPTs, high-
lighting the potential of AI to become a
GPT capable of significantly impacting ag-
gregate productivity in the future. While
AI targets a different set of outputs and
tasks than previous GPTs, primarily affect-
ing cognitive and complex functions rather
than physical or routine cognitive ones,
these outputs and tasks represent a broad
and growing share of economic activity to-
day.9 In addition, AI possesses a high de-
gree of autonomy, self-improvement poten-
tial, and can become a “method of inven-
tion”, given its ability to generate and test
ideas.

Given AI’s strong potential as a GPT, an
emerging literature formally discusses the
aggregate productivity implications of AI.
It can be divided into two broad strands:
one is mostly theoretical and focuses on
the potential implications of continued ad-
vances in AI technology for long-term pro-
ductivity growth (over several decades),
the other is focused on the nearer term
(up to 10 years or so) and draws more di-
rectly on existing evidence of the produc-
tivity gains from using current generation
AI technology.

Papers on the long-term growth impli-
cations of AI typically operate with ag-
gregate production functions and focus on
how AI could transform the growth pro-
cess, also —or primarily —through impact-
ing research and innovation. In particular,
Trammell and Korinek (2023) discuss how
transformative AI explore scenarios that

could lead to sharply accelerating, “explo-
sive” economic growth. Nordhaus (2021)
and Aghion et al. (2017) similarly explore
the possibility of explosive growth (i.e. sin-
gularities) and also discuss the limiting fac-
tors that could prevent such a scenario.
They emphasize that growth may be con-
strained by a Baumol growth disease type
effect if parts of the economy remain largely
unaffected by AI even though they are pro-
ducing goods and services that are essential
(i.e. face strong demand).In this case, the
sectors with the lowest productivity gains
are expected to grow as a share of nomi-
nal GDP, thereby reducing the aggregate
importance of productivity gains that AI
may achieve in other sectors. A common
feature of all papers on the long-run impli-
cations of AI is that they emphasize the po-
tential productivity gains that could arise
under continued technological advances in
AI rather than quantifying the productivity
gains that could be achieved with current
AI technology.

In contrast, the second strand of the lit-
erature starts from the fast-growing body
of empirical evidence on the performance
gains from adopting available AI solutions
at the individual worker or firm level, and
asks how such microeconomic gains might
translate to aggregate productivity growth
over the next decade. Answering this ques-
tion requires a suitable conceptual frame-
work that clarifies what elements need to
be considered in such a micro-to-macro ap-
proach. An influential contribution in this
literature is Acemoglu (2024) who proposes

9 The range of tasks influenced by AI could expand even further when combined with complementary technologies
such as robotics (Filippucci et al., 2024a).
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Table 2: Comparison of Modelling Choices on Impact of AI on Productivity

Goldman Sachs
(2023)*

Acemoglu
(2024)

Aghion and Bunel
(2024)

Filippucci et al.
(2024a)

I Assumption about AI

Micro-level productivity
gains / cost savings from
AI**

30%
27% labour cost

savings
27–40% labour cost

savings

30% productivity
gains (total cost

savings)

Exposure to AI
About two-thirds
of all jobs

20% Based on
Eloundou et al. (2024)

18.5–68% Based on
Eloundou et al. (2024),
Gmyrek et al. (2023),
Pizzinelli et al. (2023)

12%–50% (sector
specific; averaging

approx. 35%).
Building on

Eloundou et al. (2024)

Adoption rate of AI About 50%
23% Based on cost

effectiveness, following
Svanberg et al. (2024)

23–80% Based on
Svanberg et al. (2024),

Besiroglu and
Hobbhahn (2022)

23% or 40% Based on
previous GPT

adoption speed and
current sectoral
adoption rates

II Mechanisms captured in the framework

Reallocation across sectors
explicitly modelled? Partially*** No No Yes

Cross-sectoral links explic-
itly modelled? No No No Yes

Distributional consequences
modelled? No Yes No No

Innovation Not considered Not considered Not considered Not considered

Notes: * Goldman Sachs (2023) refers to Briggs and Kodnani (2023).
** Based on the following assumptions: 7% of all workers are displaced and find new employment; all other
workers remain in their current jobs but become more productive; the structure of the economy (sectoral
composition, prices, etc.) does not adjust.
*** Based on micro-level studies that identify task-level gains from using LLMs.
Source: Filippucci et al. (2024a). For a more detailed discussion, see section 2 in Filippucci et al. (2024a).

to gauge the aggregate productivity gains
from AI by adopting a task-based model
of production and leveraging Hulten’s ag-
gregation theorem (Hulten, 1978). Specifi-
cally, Acemoglu suggests computing the ag-
gregate productivity gain from AI over the
next decade as the product of three num-
bers: (1) the potential productivity gain in
“AI exposed” tasks, that is, in tasks that
can be performed more productively with
the help of AI; (2) the value-added share of
AI exposed tasks; and (3) the AI adoption
rate in AI exposed tasks.

Even within this second strand of the lit-
erature, studies have reached different con-
clusions regarding the size of the aggregate
gains from AI. Acemoglu (2024) finds that
AI-driven productivity gains will be trivial
in the aggregate, amounting to a cumula-

tive increase in aggregate TFP of only 0.7
per cent over a 10-year period. In contrast,
Filippucci et al. (2024a) and Aghion and
Bunel (2024) arrive at substantially larger
growth predictions by following the same,
or similar, strategy, but considering less re-
strictive assumptions on AI-driven micro
gains, exposure, and adoption compared
to those in Acemoglu (2024). These pa-
pers find aggregate productivity gains on
the order of 0.24-1.3 percentage points per
year over the next decade. Bergeaud (2024)
finds similarly large numbers for a range of
European economies.

In Filippucci et al. (2024a) as well as
its empirical extension to G7 economies in
Filippucci et al. (forthcoming), we con-
tributed to this debate in several ways.
First, we reviewed a larger body of evidence
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regarding the task-level gains from AI and
also considered a broader set of scenarios
for AI exposure and AI adoption. Second,
we went beyond the aggregation strategy
proposed in Acemoglu (2024) to explore the
possibility that the aggregate gains from AI
may be constrained by a Baumol growth
disease type drag if the productivity gains
are limited to only a few sectors in the econ-
omy. Specifically, we followed a two-step
aggregation strategy, in which we first ap-
plied the framework in Acemoglu (2024) to
derive estimates of the sectoral gains from
AI. This step revealed large sectoral varia-
tion in the expected gains from AI. In a sec-
ond step, we then used a multi-sector GE
model (borrowing from Baqaee and Farhi
(2019)) to illustrate how differential pro-
ductivity growth across sectors might give
rise to a Baumol growth disease type effect.
This aggregation strategy also allowed us
to discuss how the size of the Baumol ef-
fect depends on the cross-sectoral elasticity
of substitution in demand and the degree
to which factors can be reallocated across
sectors. Table 2 compares the key assump-
tions and modelling choices in Filippucci et
al. (2024a) with several closely related pa-
pers in the literature.

In this article, we build on Filippucci et
al. (2024a) and extend the results to other
G7 economies (Filippucci et al., forthcom-
ing). In doing so, our main focus is cross-
country differences in exposure and adop-
tion rates rather than the implications of
sectoral reallocation. We also discuss ad-
ditional upside and downside risks to our
projections that could arise inside and out-
side our conceptual framework.

AI and Aggregate Productivity
in G7 Economies

We follow the approach in Acemoglu
(2024) to arrive at aggregate productiv-
ity impacts from AI. This approach al-
lows relating aggregate gains from AI to
three drivers that have an empirical under-
pinning and thus can be used for quanti-
fying the gains: understanding and mea-
suring the potential gains from AI at the
task level; estimating the economy-wide ex-
posure to AI; and predicting AI adoption
rates in the economy over the next decade.
Below, we discuss each of these determi-
nants separately.

Task-level Productivity Gains

Filippucci et al. (2024a) review existing
studies that estimate task-level productiv-
ity gains thanks to the use of Generative
AI. These micro-level studies are often con-
ducted as controlled experiments, lending
strong credibility to the estimated effects,
and cover a range of activities, such as cus-
tomer services activities, software develop-
ment, or professional writing and business
consulting tasks. The estimates indicate
that the effect of AI tools on worker per-
formance range from 14 per cent, for ex-
ample in customer service assistance, to 56
per cent, for example in coding, as shown
in Chart 2.

In particular, Brynjolfsson et al. (2025)
exploited the staggered adoption over time
of AI-based support to customer service
employees in business process software de-
veloper companies in 2020-2021, finding a
large and significant increase in the num-
ber of case resolutions per worker (labelled

10 NUMBER 48, Spring 2025



Chart 2: Task-level Productivity Gains from Generative AI

Note: The graph shows the productivity gains reported in different studies, together with 95 per cent
confidence intervals. In parentheses, the reference country and year of the studies are shown.
Source: Filippucci et al. (2024a).

as Customer-service, 2020-21 on Chart 2).
Another study estimated the effect of AI
coding assistants on software developers,
finding an extremely high and significantly
positive effect on the number of coding
tasks completed (Coding —2022; Peng et
al., 2023). Finally, the advent of Chat-
GPT spurred a number of randomized con-
trolled experiments estimating its effect
on workers, finding a large and signifi-
cant positive effect of the AI technology:
on the speed and quality of professional
writing tasks (Professional writing – 2022;
Noy and Zhang, 2023), business consulting
performances (Business consulting – 2023;
Dell’Acqua et al., 2023), and time and qual-
ity of writing tasks for a sample of workers
(General writing – 2023; Haslberger et al.,

2023).10

One concern is that these studies were
carried out in contexts where performance
gains are most promising and may not ex-
tend to other business contexts and when
AI is used at scale in real-life environments.
However, it is important to note that for
our purposes we need to come up with an
estimate of the average potential produc-
tivity gain in AI-exposed tasks, not the av-
erage gain in any task. Still, to remain
conservative, we will assume a 30 per cent
micro-level gain, which is close to the aver-
age of the three most precise estimates and
excludes studies on coding, where the pro-
ductivity gains from AI may be particularly
large.

More recent OECD research spans an

10 A number of studies have also examined the firm-level impact of pre-generative AI technologies, albeit without
relying on experimental or quasi-experimental methods. These studies generally report positive and statisti-
cally significant effects (Figure A.1 in the Appendix), suggesting relatively substantial task-level productivity
gains and exposure already from pre-generative AI in specific contexts.
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even broader range of findings from the
rapidly growing literature (Calvino et al.,
2025b). In language translation, Lyu et
al. (2023) show significant improvements
in generative AI’s performance, while Mer-
ali (2024) finds that enhanced AI capa-
bilities allow translators to work faster,
produce better outputs, and earn more,
especially benefiting lower-skilled transla-
tors. In medical imaging, AI can deliver
useful predictions, even if radiologists still
hesitate to fully trust these AI-generated
predictions (Mullainathan and Obermeyer,
2019). In legal contexts, AI helps sum-
marize complex judgments (Deroy et al.,
2024), correctly assess simple questions
about legal issues and interpretation (Choi
and Schwarcz, 2023; Schwarcz et al., 2025)
but also improve judicial decisions (Klein-
berg et al., 2018). In some of these in-
stances, the gains from AI are of compa-
rable magnitude to the ones in Chart 1 or
even larger (Schwarcz et al., 2025).11

The Exposure of Tasks to AI by Sec-
tors

Although AI can assist with a broad ar-
ray of tasks, as discussed earlier, these ac-

count for only a portion of total economic
activity. To quantify to what extent AI can
potentially impact tasks, tasks are catego-
rized based on whether they are exposed
to AI. A task is exposed to AI if it can be
performed more effectively with the help of
AI. Acemoglu (2024) and Filippucci et al.
(2024a) rely on estimates of task-level ex-
posure to AI from Eloundou et al. (2024).12

This article evaluates for each task in the
detailed US-based occupational database
O*NET whether it can be performed at
least 50 per cent faster with the help of
AI or with AI integrated with additional
software.

We distinguish between two different
measures of exposure. The first measure,
which we label baseline exposure, is based
on the median estimate from Eloundou et
al. (2024). Note that this estimate relies
only on what were Large Language Mod-
els (LLM) capabilities at the time of their
study, in 2023, and thus excludes subse-
quent and future improvements in AI.13

Therefore, our second measure accounts
of AI exposure with expanded capabilities
fully considers as AI-exposed those tasks
where additional software could be devel-
oped on top of LLMs, reducing the time
it takes to complete the task by at least
half. We interpret this measure as a more

11 Firm-level evidence on pre-generative AI suggest gains that appear to be of a smaller magnitude, similar to the
gains from other ICT technologies, although causal identification is more challenging than in the experimental
settings at the task level – see Figure A.1 in the Appendix.

12 An alternative, earlier measure is developed by Felten et al. (2021) which shows strong correlation with
Eloundou et al. (2024)

13 Eloundou et al. (2024) refer to their median estimate as the measure.

14 Eloundou et al. (2024) also offer a third exposure measure, which they label “automation index” and which
is meant to capture whether a work activity can be autonomously performed by AI. Specifically, this more
restrictive exposure measure requires that LLMs can complete at least 90 per cent of the task autonomously.
It is this exposure measure that is used in Acemoglu (2024), which partly explains why he finds smaller
productivity gains from AI compared to Aghion and Bunel (2024) or Filippucci et al. (2024a).
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Chart 3: AI Exposure in G7 Countries

Note: This chart reports the average share of tasks exposed to AI across G7 economies. Country-level averages
are obtained by mapping granular task-level exposure from Eloundou et al. (2024) (relying on LLM capabilities
as of 2023) to occupations within different sectors. This approach distinguishes the occupational composition of
43 sectors (ISIC Rev. 4) which are aggregated to the country-level using respective 2019 pre-pandemic value
added shares of different sectors. Due to a lack of data, the occupational composition of industries in Japan is
assumed to be the same as in the G7 average.
Source: Filippucci et al. (2024a).

forward looking one, more likely to capture
average exposure over our projection hori-
zon.14

Starting from task-level estimates, we
calculate the average AI exposure of de-
tailed occupations based on the O*NET
dataset. For each G7 country, we then
aggregate occupations into industries and
compute aggregate exposure, weighting
each industry by its value-added share in
the national economy. Chart 3 presents the
resulting country-specific estimates of AI
exposure, ranging between 30 and 35 per
cent for baseline AI capabilities and around
50 per cent for expanded AI capabilities.
These are substantial figures but far from
covering the whole economy.

Cross-country variation arises from dif-
ferences in the structure of economic ac-

tivity – industries such as ICT, finance,
and professional services, which are more
exposed to AI, contribute more to value
added in some countries than in others –
and to a lesser extent from variation in
the occupational composition within indus-
tries, as some countries have a higher in-
cidence of AI-intensive roles (e.g., coders,
translators, or accountants) in specific in-
dustries. Overall, the differences in ex-
posure among G7 countries are such that
the most exposed country reports levels ap-
proximately 15 per cent higher than the
least exposed one.

Projected AI Adoption Rates

Aggregate productivity gains from AI
can only be realized if AI technology is ac-

INTERNATIONAL PRODUCTIVITY MONITOR 13



Chart 4: AI Adoption Paths Following Previous General Purpose Technologies

Source: adapted from Filippucci, Gal and Schief (2024), building on United States Census (internet and
computers) and Woolf (1987) for electricity adoption of businesses and United States Census Bureau, Business
Trends and Outlook Survey (BTOS) for AI adoption.

tually used i.e. adopted, by firms. Hence,
to assess the economy-wide magnitude of
these gains, we need to project the econ-
omy wide AI adoption rate into the future.
Consistent with the literature, we aim at
predicting productivity gains over a 10-year
projection horizon and therefore project AI
adoption rates of the next decade.

The rate at which AI applications will
spread throughout the economy depends
on many different factors, such as their
user-friendliness, their cost effectiveness,
the need for complementary investments,
the availability of data centers and other
types of infrastructure, the general degree
of business dynamism, or even cultural fac-
tors shaping the readiness of workers to
embrace AI tools. Predicting AI adop-
tion rates over the next decade is there-
fore a challenging task. That said, it can
be instructive to consider the historical ex-

perience with previous major GPTs, such
as electricity, computers, or the internet.
Chart 4 shows the adoption rates among
firms for these technologies in the United
States during the first 10 years after a
user-friendly breakthrough becomes avail-
able (taken to be the appearance of Chat-
GPT in the case of AI). According to this
historical experience, adoption rates can be
expected to rise by approximately 23 to 40
percentage points over a 10-year period.

Given the considerable uncertainty
around future adoption rates, we consider
two scenarios. Our slow adoption scenario
of a 23 percentage point increase is in line
with the relatively slow adoption path of an
earlier technology, electricity. In contrast,
our rapid adoption scenario is in line with
the adoption path of digital technologies in
the workplace such as computers and the
internet. Acemoglu (2024) also assumed
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Chart 5: AI Adoption Among Firms in 2024 and Projections for 2034, in Per cent per
year

Note: This chart presents the current AI adoption and its projected increase across G7 countries within 10
years. Predictions are based on extrapolations of comparable current AI adoption rates, derived through data
harmonisation and out-of-sample predictions with digital infrastructure quality and skills as determinants.
Extrapolations are in line with previous General Purpose Technologies electricity (slow adoption scenario) and
computers/ internet (rapid adoption scenario).
Source: Authors’ calculations (Filippucci et al., forthcoming).

a 23 per cent adoption rate adoption over
10 years (compared to approximately zero
in the base year) based on an argument
about the cost-effectiveness of a specific AI
technology (computer vision), reported in
Svanberg et al. (2024). Incidentally, we
note that our 40 percentage point adoption
increase scenario approximately coincides
with a more optimistic scenario in Svanberg
et al. (2024) that allows for improvements
in the cost effectiveness of the technology.

To analyse the productivity implications
of AI for countries other than the United
States, these future AI adoption rate pro-
jections (shown in Chart 4) need to be
adapted to the context of other countries.
Our projections are based on comparable
current AI adoption rates across G7 coun-
tries, derived through data harmonisation

and by relying on key fundamental deter-
minants of adoption (digital infrastructure
quality and skills) to capture adoption ca-
pacity. The estimates for current AI adop-
tion rates for each country are then extrap-
olated using the two scenarios of AI adop-
tion: a slow and a rapid adoption pathway,
following an S-shaped adoption path which
was observed for previous major technolo-
gies (Hall, 2009; Geroski, 2000; Tankwa et
al., 2025, building on Griliches, 1957 and
Rogers, 1962). This implies an accelerat-
ing speed of adoption in the initial diffu-
sion phase of the technology, followed by
a slowdown later on as adoption reaches a
saturation level. Chart 5 shows the pre-
dicted increase in AI adoption across G7
economies between 2024 and 2034.

Even the rapid adoption scenario of a 40

INTERNATIONAL PRODUCTIVITY MONITOR 15



percentage point increase in 10 years could
seem relatively conservative in light of the
fact that AI is generally considered a par-
ticularly user-friendly technology. On the
other hand, systemic adoption of AI in the
core business functions of firms may still
require substantial complementary invest-
ments in a range of intangible assets, in-
cluding data, managerial practices, and or-
ganization (Agrawal et al., 2022). Such
investments are not only costly but also
require experimentation and learning-by-
doing, which may slow down adoption.

Another risk to these scenarios is that
they focus on a single, economy-wide adop-
tion rate, implicitly assuming it is homoge-
nous across economic activities. In prac-
tice, however, firms and workers who carry
out economic activities with stronger AI
exposure may also be more likely to adopt
AI as they may find it more profitable to in-
tegrate AI in their business processes, given
the higher returns associated with higher
exposure. A positive relationship between
adoption and exposure would increase the
share of AI-exposed tasks in the overall
economy where AI is adopted, compared to
our situation focusing only on overall adop-
tion rates. This in turn would lead to larger
aggregate gains than presented here.

Aggregate Productivity Gains

In the preceding sub-sections, we have

discussed our best estimates of the average
task-level productivity gains that might be
achieved in AI-exposed tasks, the share of
AI-exposed tasks within economies, and
the likely AI adoption rates. This sub-
section addresses the question of how to
use these estimates to derive the implied
aggregate productivity gains. This is not a
trivial task, because productivity shocks at
the microeconomic level also cause changes
in the structure of the economy (e.g. reallo-
cation of factors across sectors, changes in
the input-output structure of the economy,
changes in relative output prices), which all
potentially matter for aggregate productiv-
ity growth.

In a seminal contribution, Hulten (1978)
showed that aggregate productivity gains
can, to a first order, be approximated as an
appropriately weighted sum of the microe-
conomic productivity changes. The the-
orem applies in any competitive economy
with constant returns to scale, irrespec-
tive of underlying structural features of the
economy, such as the network of input-
output linkages or the elasticities of sub-
stitution in production and consumption.15

In this spirit, we follow Acemoglu (2024)
and leverage Hulten’s theorem to approx-
imate aggregate TFP gains over the next
decade as a simple multiplication of our
estimates for micro gains, current AI ex-
posure, and the projected increase in AI
adoption over the next ten years. The cor-

15 Hulten’s theorem is an implication of the envelope theorem. Intuitively, because equilibrium allocations in a
competitive economy correspond to the solution of the social planner’s problem, small changes in allocations
around the equilibrium have only negligible effects on aggregate productivity, and the aggregate impact of
micro-level productivity shocks reflect the Lagrange multipliers on the resource constraints. If the micro units
are firms or sectors and production features input-output linkages and if productivity gains are measured as
gross output-based TFP growth, then a micro unit’s weight is the ratio of its gross sales to GDP and the
sum of these (Domar) weights can exceed one. In our setting, the micro units are tasks and we do not model
input-output linkages between tasks. In this case, the weights are given by the micro units’ value-added shares.
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responding formula reads as follows.

Aggregate Productivity Growthc,[t,t+10]
= Micro Level Gains
× Exposurec × ∆Adoption Ratec,[t+10]

Chart 6 shows the resulting projections
of aggregate productivity gains from AI
across G7 economies annualized over a 10-
year time horizon. Predictions on the con-
tribution of AI to annual TFP growth over
the 10-year time horizon differ significantly
across G7 economies and scenarios. Across
countries, these range from 0.11 to 0.27
percentage points under the slow adop-
tion scenario, and from 0.34 to 0.66 per-
centage points under the rapid adoption
and expanded capabilities scenario. Cross-
country differences across these projections
reflect country differences regarding the oc-
cupational composition within sectors, to
a lesser extent, and more importantly, the
sectoral value-added shares and projections
of AI adoption rates more importantly.

Upside and Downside Risks for
AI Productivity Projections

There are several reasons why the growth
projections in Chart 6 could overstate or
understate the productivity gains from AI.
While some of these reasons have been dis-
cussed in the context of the aggregation
framework in the previous sections, other
reasons go beyond this framework and are
discussed below.

AI’s Impacts on Innovation and Re-
search

The projected productivity gains in
Chart 6 could understate the true gains

from AI to the extent that additional pro-
ductivity gains can result from broader AI-
driven innovations in organizational struc-
tures and business models. Such gains
would not be observed at the level of indi-
vidual tasks but would emerge in the pro-
ductive reconfiguration of the interlinkages
between existing work tasks or in the cre-
ation of entirely new tasks.

More generally, AI could improve the
process of research and innovation. Aghion
et al. (2017) emphasize that AI will not
only affect the production function of goods
and services, but also the “idea produc-
tion function”. If AI can increase the rate
of technological progress, the productivity
gains over the next decade could be larger
than what we predicted. Aghion et al.
(2017) and Trammell and Korinek (2023)
discuss the possibility that such a scenario
leads to explosive growth in the medium
term, while also pointing to possible limit-
ing factors, such as Baumol’s growth dis-
ease (discussed below).

There is empirical evidence of AI in-
creasing the productivity of researchers
and boosting innovation. Calvino et al.
(2025b) review the existing literature and
show that generative AI accelerates inno-
vation in academia and the private sector.
Specifically, it supports research by help-
ing humans develop novel ideas or by exe-
cuting research tasks and freeing up time,
which allow researchers to focus on those
tasks that require human expertise. AI
patents are cited by follow-on innovations
in a broad number of application areas,
supporting the general-purpose nature of
AI as a technology, and there is evidence
of positive feedback loops from follow-on
innovation back to generative AI innova-
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Chart 6: Projected Aggregate TFP Gains from AI Over a Decade in G7 Countries (in
percentage points, annualized)

Source: Adapted from Filippucci et al. (forthcoming)

tion, supporting the notion that AI could
trigger a virtuous cycle of continuously in-
creasing productivity growth (Calvino et
al., 2025a).

At the same time, AI-driven techno-
logical developments may not always con-
tribute positively to welfare – some may
increase measured productivity while re-
ducing social value. For instance, AI
could enable the creation of “bad” tasks
– such as manipulative advertising or ad-
dictive digital content – that generate rev-
enue at the cost of well-being (Acemoglu,
2024). Moreover, malicious applications,
including AI-enabled cyberattacks, could
destroy value and undermine economic per-
formance. Longer-term concerns include
the possibility of advanced AI systems
with self-improvement capabilities outpac-
ing human control and raising existential
safety risks (Nordhaus, 2021; Jones, 2023;
Bostrom, 2014; Suleyman and Bhaskar,
2023). These scenarios, though specula-
tive, underscore the importance of align-

ing AI development with societal goals and
closely monitoring potentially harmful de-
velopments, as highlighted by ongoing ini-
tiatives such as the OECD.AI Incidents and
Hazards Monitor (OECD, 2025).

Baumol’s Growth Disease

The projected TFP gains shown in Chart
6 are derived under the assumption that
sectoral GDP shares remain unaffected by
AI-driven productivity growth. This ag-
gregation approach can lead to an over-
estimation of the aggregate gains from AI
if the sectors with the fastest productivity
growth shrink as a share of GDP. Histor-
ically, sectors experiencing faster produc-
tivity growth have in fact tended to see de-
creases in their GDP shares (driven by de-
clines in relative output prices and employ-
ment shares), thus reducing aggregate pro-
ductivity growth – a phenomenon known
as Baumol’s growth disease (Baumol, 1967;
Nordhaus, 2008).
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Traditionally, Baumol’s growth disease
is discussed in the context of the rising
GDP share of low-productivity growth ser-
vices. Although AI-driven productivity
growth may benefit some of the sectors
that have experienced limited productivity
growth in the past, the mechanisms under-
lying Baumol’s growth disease should still
apply. In particular, if demand for the out-
put of the least AI-augmented sectors is
relatively price-inelastic, then the expen-
diture share on these sectors would grow.
As Aghion et al. (2017) note, AI-driven
growth may then be constrained “not by
what we do well but rather by what is es-
sential and yet hard to improve.”

Filippucci et al. (2024a) analyze how
sectoral heterogeneity in AI-driven pro-
ductivity gains may give rise to a Bau-
mol effect over the medium term. Using
a multi-sector general equilibrium model,
they show that the size of the effect de-
pends on sectoral productivity patterns,
demand elasticities, and whether factors of
production can be easily reallocated across
sectors. Under their most pessimistic sce-
narios, a Baumol effect could reduce AI’s
aggregate productivity gains by up to one-
third.

J-curve Dynamics

As with previous GPTs, generative AI
may experience a productivity paradox,
where improvements in productivity are
not immediately apparent. Realising these
gains often require additional, complemen-
tary investments in a range of intangi-
ble assets such as workforce skill enhance-
ment, organizational restructuring, data,
software or innovation in general. Some of

these complementary assets are not fully
captured yet in standard official statistics
(e.g. National Accounts) (Brynjolfsson et
al., 2021). This leads to a productivity
J-curve, characterizing the adoption of a
new General Purpose Technology: in the
early phase of adoption, both capital in-
puts and output are under-measured due to
unaccounted intangible investments, lead-
ing to an underestimation of productivity
improvements. In the later phase, once
the complementary investments begin to
bear fruit but remain unmeasured, mea-
sured productivity may be overstated, as
output gains are attributed to technology
alone rather than to prior investment.

Competition

AI could further complicate existing
competition issues in digital markets
and introduce new market failures that
threaten its anticipated productivity ben-
efits. Competition concerns may emerge
both upstream in the supply of AI and
downstream in its user applications that
risk undermining productivity growth by
limiting access to AI technologies and re-
inforcing market concentration (Filippucci
et al., 2024b; OECD, 2024).

Especially with the advent of Generative
AI (LLMs and image generators, etc.), the
upstream market of AI, i.e. AI develop-
ment, depends on a complex value chain
involving computing infrastructure, vast
datasets, and specialized expertise, where
economies of scale and network effects can
lead to market concentration and barriers
to entry (Nicoletti et al., 2023). Larger
datasets and computing power boost AI
performance —a dynamic known as “scal-
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ing laws” (Kaplan et al., 2020) —giving
an advantage to established firms with
proprietary resources and infrastructure
(CMA, 2023). However, open-source mod-
els and supportive policies around data ac-
cess and infrastructure could counteract
these trends by fostering competition and
inclusion. Despite concerns about concen-
tration, the market for foundation models
currently shows signs of dynamism, with a
growing number of models, suppliers, and
improving performance at decreasing costs
(André et al., 2025).16

The use of AI can also raise significant
competition concerns downstream, particu-
larly when AI-powered business models ex-
ploit consumer biases or personalize pricing
in non-transparent ways. Such practices
can manipulate consumer choices, promote
low-quality products (Calo, 2013), or en-
able discriminatory pricing, especially in
opaque online markets (OECD, 2018). AI
recommender systems may reinforce mar-
ket concentration by boosting attention to
already-dominant products (Calvano et al.,
2023), while “killer acquisitions” of emerg-
ing firms by incumbents can further limit
market contestability. These trends risk
stifling innovation and slowing AI adop-
tion in less competitive sectors. Addition-
ally, AI systems may facilitate tacit or algo-
rithmic collusion, especially in pricing, by
enabling autonomous coordination among
firms without explicit agreements (OECD,
2021).

Trade and Global Access

In the context of international trade, AI
presents both upside and downside risks.
The benefits of AI for trade are not auto-
matic, and access to AI itself faces down-
side risks if trade in digital services – in-
cluding AI provided services – or ICT as-
sets become fragmented. Indeed, limited
cross-border access to competitively priced
and high-quality AI tools could hold back
AI adoption of companies outside countries
that develop such advanced AI models, and
could also restrict innovation on the devel-
oper’s front. Moreover, trade restrictions
on hardware components that are critical
for AI training and inference, e.g. advanced
semiconductors, could create bottlenecks
that stifle technological progress.

On the upside, AI has the potential
to lower trade costs and stimulate trade
flows by reducing non-tariff barriers such
as adapting to regulatory complexity and
differences or to language obstacles. AI
tools can automate summarizing legal and
regulatory documents, enhance translation
accuracy, and streamline compliance pro-
cesses —developments that are particularly
beneficial for small and medium-sized en-
terprises (SMEs), which often lack the re-
sources to overcome such barriers (Rubi-
nova and Sebti, 2021). These advance-
ments can make trade more inclusive and
efficient. Moreover, AI-driven productiv-
ity gains can ripple through global value

16 For instance, André et al. (2025) find that the capabilities of the large language model that showed the
highest performing on industry benchmark tests in March 2023 (GPT-4 by OpenAI) are achieved by open
source models in February 2025, which are accessible on the cloud at less than one-hundredth of the price that
OpenAI charged two years ago. The finding that this segment of the AI market seems more dynamic than
initially feared is also consistent with the conclusions of Hagiu and Wright (2025), although it is important to
stress that these are still early days when market players experiment with different business models.
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chains (GVCs) via improved process plan-
ning, better quality intermediates, and
lower input costs, ultimately benefiting
both producers and consumers across bor-
ders (WTO, 2024).

Impact on Skill Development

Generative AI is also reshaping human
capital development – an essential engine of
long-term growth – by enhancing learning,
re-skilling, and problem-solving in both
educational and workplace environments
(OECD, 2023a). In particular, AI per-
sonalizes instruction and delivers outsized
gains for lower-proficiency learners (Cheon
et al., 2025; Mollick et al., 2024). It can
also enable students to complete tasks more
efficiently (Zhang et al., 2024; Urban et al.,
2024) and may function as an on-demand
subject-matter expert and search tool for
educators and learners (Kestin et al., 2024).
Finally, it can also provide cost-effective tu-
toring in low-resource settings (Henkel et
al., 2024; De Simone et al., 2025). These
developments could provide indirect pro-
ductivity benefits from AI through improv-
ing human capital. On the other hand, skill
acquisition in the schooling system may be
hampered if AI tools end up having long-
term negative effects on skill acquisition,
and they are nonetheless used to obtain
short-run benefits by students.

Concluding Remarks

This article has reviewed the po-
tential impact of Artificial Intelligence
(AI) on productivity growth, with a fo-
cus on medium-term projections for G7
economies. Drawing on recent OECD work

and related literature, we discussed how
AI—particularly generative models—could
become a major driver of total factor
productivity (TFP) growth over the next
decade. Benchmark estimates suggest that
AI may contribute between 0.3–0.7 per-
centage points to annual TFP growth in the
United States, with somewhat lower but
still substantial impacts expected in other
G7 economies. These effects, while smaller
than those observed during the ICT boom,
are significant in the context of persistently
sluggish productivity growth.

Despite these promising projections, sev-
eral important sources of uncertainty re-
main. First, the macroeconomic impact of
AI will depend critically on adoption dy-
namics —both the speed and breadth of
diffusion across firms and sectors—as well
as the ability of laggard firms to catch
up. Second, the full productivity benefits
of AI are likely to hinge on complemen-
tary investments in intangible assets, such
as data infrastructure, skills, and organiza-
tional adaptation, much of which remains
unmeasured in national statistics.

Moreover, AI may generate risks that
could dampen or delay its productivity-
enhancing effects. These include rising
market concentration in AI supply chains,
potential abuses of market power, algo-
rithmic collusion, and uses of AI that pri-
oritizes automation over quality or wel-
fare. Broader societal risks—including mis-
information, loss of trust, and misalign-
ment between AI systems and human ob-
jectives—could also slow down adoption
and trigger policy responses that restrict
diffusion.

Future research should aim to better
quantify the general equilibrium implica-
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tions of AI adoption, develop more robust
cross-country adoption metrics, and assess
how various policy levers—from competi-
tion enforcement to digital infrastructure
investment— shape outcomes. Given the
pace of technological progress and the mag-
nitude of the stakes involved, deepening the
empirical and theoretical understanding of
AI’s productivity effects remains an urgent
task.
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Figure A.1: The Relationship Between AI and Productivity at the Worker Level:
Selected Estimates from the Literature

Notes: Firm-level studies focusing on pre-Generative AI. “AI use” is a 0-1 dummy obtained by firm surveys,
while AI patents refers either to a 0-1 dummy for having at least 1 patent (US study) or to the number of
patents in firms (for the EU+UK study, where the average number is 0.48 with 2.6 standard deviation, so that
firms cumulating more than one patents are relatively few). Two of the estimates in the panel (“9 countries,
2016-21”) relate to the same study (Calvino and Fontanelli, 2023), but the second estimate controls for other
ICT technology use and thus better isolates the marginal impact of AI. Given that the study reports separate
estimates for all 9 countries, the median estimate across countries is shown on the Figure. *Controlling for
other ICT technologies.
Source: Filippucci et al. (2024b).
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