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Abstract 
Business investment in research and development (R&D) makes a key contribution to rising living 

standards. Firms undertaking the R&D can reduce production costs and introduce new products that 

provide benefits to consumers that are not fully captured in selling prices. Further, it is very difficult for 

R&D-performing firms to prevent some of the knowledge created from leaking out or spilling over to 

other firms. Since firms do not take these positive spillover benefits into consideration when making 

investment decisions, most governments subsidize business investment in R&D with the expectation 

that economic performance will improve as a result. Our study confirms the existence of substantial 

spillover benefits from R&D performed in Canada, so government support for R&D is justified. However, 

we do not find any empirical evidence to support the current policy of subsidizing R&D at a higher rate 

when it is performed by small firms than when it is performed by large firms. We also find much lower 

private rate of return on R&D performed by small firms than by large firms. Subsidies appear to be 

playing a key role in this result. 
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R&D Spillovers in Canadian Industry: Results from a New 

Micro Database 

Executive Summary 
There is a sound public policy case for subsidizing R&D. When firms perform R&D, they create 

knowledge that allows them to introduce new products, improve existing goods and services or reduce 

production costs. However, some of the knowledge created inevitably leaks out or spills over to other 

firms, allowing them to reap benefits from the R&D performed by other firms. Firms do not consider 

these spillover benefits when deciding how much to invest in R&D, so a subsidy to encourage more R&D 

is the right policy response.  

When deciding how much to subsidize R&D, governments should consider both the benefits and costs of 

the subsidy. The benefit to society from subsidizing R&D is determined by the knowledge spillovers, 

which are likely to be a constant share of the additional R&D induced by the subsidy. (The additional 

R&D induced by a subsidy has a direct effect on output, but this is offset by lower output in other 

sectors when taxes are increased, or spending is cut, to finance the subsidy.) On the cost side, the most 

important consideration is how the subsidy affects the commercial rate of return on the additional R&D 

performed. By lowering the hurdle rate for a profitable investment, subsidies allow R&D projects with 

less commercial potential to be undertaken, which lowers the value of output. The hurdle rate, or the 

required private rate of return on R&D, declines as the subsidy rate rises, so the loss in output becomes 

a larger share of the additional R&D as the subsidy rate rises.  

Since increases in the subsidy rate generate benefits that are a constant share of the additional R&D 

induced by the subsidy and costs that are a rising share of the additional R&D, the net benefit has an 

inverted “U” shape: it initially rises along with the subsidy rate but eventually declines as the private 

return on R&D continues to fall. The maximum net benefit to society occurs when the subsidy rate is 

equal to the spillover rate. Note, however, that since governments incur costs to administer subsidy 

programs and firms spend money to comply with program requirements, the maximum net benefit may 

be negative. 

Empirical analysis of spillovers can therefore make an important contribution to public policy by 

providing evidence on how much to subsidize R&D. In this paper, we employ a range of regression 

techniques to investigate the importance of R&D spillovers, making use of a data base consisting of all 

incorporated firms with employees performing R&D that was developed specifically for this study. Our 

analysis fills three gaps in the empirical literature on R&D spillovers. First, it is the only analysis using 

firm-level data covering all R&D performers in Canada. Second, we have access to detailed information 

on R&D spending by technological field, which allows us to investigate spillovers between firms 

operating in the same or similar technological fields. Almost all other empirical analyses of spillovers 

measure technological proximity using patenting activity, which has the disadvantage of limiting the 

analysis to firms that take out patents. Third, our study is one of three in the literature that provides 

evidence on spillovers by size of firm. 
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Our analysis confirms the existence of substantial spillover benefits from R&D performed in Canada, so 

governments are responding appropriately by subsidizing R&D. However, governments in Canada 

subsidize R&D performed by small firms at a much higher rate than R&D performed by larger firms. The 

federal government provides a 15% tax credit for R&D performed by large firms while all small and 

medium-sized Canadian-controlled private firms performing R&D receive a 35% refundable tax credit. 

Provincial programs reinforce this bias, raising the average small firm subsidy rate to almost 43% and the 

large firm rate to about 20%. In addition, about 2,000 small firms top up the SR&ED incentive, which is 

available to all firms performing R&D, with targeted assistance from the Industrial Research Assistance 

Program (IRAP), raising the subsidy rate to around 60% on average for these firms.  

Our research does not support this policy bias in favour of small firms. Our analysis indicates that the 

subsidy rate on R&D performed by small firms is well above its optimal value while the large firm 

subsidy rate is below it. In fact, our research finds that small firms generate less spillovers than larger 

firms. Our research also shows that the rate of return on R&D performed by small firms is much lower 

than the rate of return for large firms. The higher subsidy rate for small firms accounts for a substantial 

portion of this gap in private rates of return by driving down the hurdle rate for investment further for 

small firms than for large firms. The lower private rate of return may also be a factor in the lower 

spillovers generated by small firms: projects with low commercial value to the performing firm may not 

provide much useful knowledge to other firms either. 

The lower spillovers generated by small firms suggest that R&D performed by small firms should be 

subsidized less than R&D performed by larger firms. However, the development of small firms is 

impeded by several factors, including more burdensome costs of filing tax returns and applying for R&D 

support programs, barriers to entry erected by larger firms and tax policies that unintentionally hinder 

entrepreneurs. Perhaps more importantly, a few small firms are the source of innovations that have big 

impacts on living standards that are not captured in the spillover analysis. As a result, it would not be 

prudent to consider only the spillover rate when deciding how much to subsidize R&D performed by 

small firms.  

Our research indicates that the all-firm average spillover rate is approximately 30%, which is about 10 

percentage points above the small firm spillover rate. Adopting this as a common federal-provincial 

SR&ED subsidy rate would raise real income in Canada by lowering the small firm rate and increasing the 

large firm rate closer to their optimal levels. The federal government could achieve the target combined 

rate on its own by reducing the SR&ED small firm rate to 20% and raising the large firm rate to 25%. 

Thousands of small firms would continue to top up the SR&ED benefits with subsidies from IRAP, which 

could raise the subsidy rate slightly above 40% for these particularly promising firms. 
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R&D Spillovers in Canadian Industry: Results from a New 

Micro Database1 

I. Introduction 
Business investment in research and development (R&D) makes a key contribution to rising living 

standards. Firms undertaking the R&D can reduce production costs and introduce new products that 

provide benefits to consumers that are not fully captured in selling prices. Further, it is very difficult for 

R&D-performing firms to prevent some of the knowledge created from leaking out or spilling over to 

other firms. Since firms do not take these positive spillover benefits into consideration when making 

investment decisions, most governments subsidize business investment in R&D with the expectation 

that economic performance will improve as a result.  

There is a rich empirical literature on the returns to R&D, covering private and social returns as well as 

the gap between the two, which is often described as the external return to R&D. Early analyses 

generally involved case studies, but the dominant approach now is econometric. Researchers typically 

estimate the parameters of a production or cost function that includes the owned stock of R&D, tangible 

capital and labour as inputs along with some measure of R&D that is external to the firm (or sector or 

country) as an additional factor affecting output. A positive coefficient on the stock of external R&D, or 

the spillover pool, indicates that that firms benefit from the knowledge created by other firms. 

Our study adds to this empirical literature, filling three gaps. First, studies using Canadian data are not 

abundant. The only study of R&D spillovers using Canadian firm-level data was prepared 31 years ago by 

Bernstein (1988), covering selected manufacturing industries. Second, we define the spillover pool using 

a measure of technological proximity based on firms’ reported expenditure in 147 research fields. This 

approach has a considerable advantage over the more usual approach of defining proximity in terms of 

patenting activities since it allows all R&D performers to be included in the analysis. Third, very little of 

the empirical analysis addresses how the external return to R&D varies by size of firm. We calculate 

separate spillover pools by size of firm, which allows us to assess whether the generation of spillovers, 

and hence the optimal subsidy rate, varies by size of firm. This is an important issue in Canada, which 

along with 7 other OECD member countries, subsidizes R&D performed by small firms at a substantially 

higher rate than R&D performed by larger firms. 

 
1 Myeongwan Kim was an Economist at the Centre for the Study of Living Standards from September 2017 until 
July 2019. John Lester is a Senior Research Associate at the Centre for the Study of Living Standards. This project 
makes use of a micro database at the Canadian Centre for Data Development and Economic Research (CDER) at 
Statistics Canada developed by John Lester, Ryan MacDonald, Javad Sadeghzadeh and Weimen Wang. 
Development of the database was supported by funding from the Strategy, Research and Results Branch of the 
federal Department of Innovation, Science and Economic Development. Funding for this research was provided by 
the Productivity Partnership as supported by the Social Sciences and Humanities Research Council of Canada. 
While the research and analysis are based on data from Statistics Canada, the opinions expressed do not represent 
the views of the agency. More information on CDER is available at http://www.statcan.gc.ca/cder-cdre/index-
eng.htm.  

Emails: daniel.kim@csls.ca, john.lester@sympatico.ca.  

http://www.statcan.gc.ca/cder-cdre/index-eng.htm
http://www.statcan.gc.ca/cder-cdre/index-eng.htm
mailto:daniel.kim@csls.ca
mailto:john.lester@sympatico.ca


6 
 

We have access to a longitudinal data base covering the period from 2000 to 2012 of all incorporated 

firms with employees in Canada. We use a standard augmented production function approach in our 

analysis of spillovers, with real value added as the output measure. We estimate the production 

function (in logs) for an unbalanced panel of R&D performing firms using static and dynamic modelling 

approaches. Our preferred results are based on a static model with a fixed-effect estimator. While there 

is a compelling theoretical case for using a dynamic panel data model, it proved difficult to find an ideal 

specification in a generalized method of moments context. Nevertheless, our analysis with system 

generalized method of moments estimators based on a dynamic model supports the results from the 

static model. 

We obtain coefficients on the conventional inputs that are consistent with income shares and, when 

R&D capital is included, the sum of the coefficients is close to one but constant returns to scale is 

rejected in our static production function but not in the dynamic version. The estimated coefficient on 

internal R&D capital implies a rate of return of 33%, which is substantially greater than the median 

obtained in our literature survey. The private rate of return on R&D performed by large firms is about 

35% points higher than the private return to small firms. Subsidies appear to be playing a key role in this 

result. Using our preferred measure of the spillover pool, the rate of return on external R&D is 

approximately 33%, which is six percentage points higher than the median of estimates found in the 

literature. We find evidence that spillovers increase with the size of the firm performing the R&D. The 

external rate of return to R&D performed by large firms is 52% while the external return to R&D 

performed by small firms is 19%. 

This paper is organized as follows. The next section presents an extended review of the literature, 

discussing the analytical framework and the econometric issues arising in empirical estimation of the 

returns to internal and external R&D. The section also discusses the definition of the spillover pool and 

summarizes the empirical work on rates of return. The data used in this study are described in the third 

section, which also includes a discussing of how the data were “cleaned” prior to performing the 

empirical work. In section IV, we discuss how the spillover pool was calculated. Our estimation 

framework and results are presented in section V, which includes some robustness checks. Our analysis 

by size of firm is presented in section VI, which is followed by some concluding remarks. 

II. Literature review 

1. Analytical framework 
A general form of a production function that can be used to analyse the private and external rates of 

return on R&D is set out in equation 1.  

(1) 𝑌𝑖𝑡 = 𝐴𝑖𝑡𝐹𝑖(𝑋𝑖𝑡) 

where 𝑌𝑖𝑡  denotes output of firm (or industry) 𝑖 at time 𝑡;𝑋is a vector of inputs; and A is the Hicks-

neutral efficiency level of firm 𝑖 at time 𝑡. 

The function 𝐹 is most commonly specified as Cobb-Douglas in the recent empirical literature. With that 

assumption and taking logs, a potential estimating equation is: 

(2) 𝑦𝑖𝑡 = 𝑎0 + 𝛼𝑐𝑖𝑡 + 𝛽𝑙𝑖𝑡 + 𝜃𝑚𝑖𝑡 +  𝛾𝑘𝑖𝑡 + 𝜑𝑠𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡 
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where lower case letters represent natural logarithms and𝑦 is output, 𝑐 is tangible capital, 𝑙 is labour 

input,𝑚 is materials,𝑘 is the firm’s internal stock of knowledge capital, and 𝑠 is the stock of external 

knowledge capital relevant to the firm. We assume ln(𝐴𝑖𝑡) can be decomposed into the mean efficiency 

level across firms (𝑎0) and firm- and time-specific deviations from the mean observable to firms (𝑣𝑖𝑡) 

and unobservable to firms (𝑢𝑖𝑡) (i.e.ln(𝐴𝑖𝑡) =  𝑎0 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡).2 

Depending on the choice of estimation method, equation (2) can take different forms in order to 

capture productivity shocks unobserved to econometricians (i.e.𝑣𝑖𝑡 + 𝑢𝑖𝑡). For example, by assuming 𝑣𝑖𝑡 

can be decomposed into a firm-specific but time-invariant component (𝜂𝑖) and a time-variant 

component affecting all firms (𝜔𝑡), we can estimate equation (2) using a fixed effects estimator with the 

following equation: 

(3) 𝑦𝑖𝑡 = 𝑎0 + 𝛼𝑐𝑖𝑡 + 𝛽𝑙𝑖𝑡 + 𝜃𝑚𝑖𝑡 +  𝛾𝑘𝑖𝑡 + 𝜑𝑠𝑖𝑡 + 𝜂𝑖 + 𝜔𝑡 + 𝑢𝑖𝑡 

In empirical work, it is relatively common to use sales as a proxy for gross output and to use value added 

instead of gross output. Hall, Mairesse, and Mohnen (2010) make the point that while theory suggests 

gross output is the preferred measure, practical considerations often make value-added the better 

option. For example, differences in the degree of vertical integration among firms cause variations in the 

materials-output ratio that are difficult to model.  

Following the analysis of Cohen and Levinthal (1989), researchers frequently include a variable to 

capture a firm’s capacity to absorb knowledge created by other firms. The most common approach in 

the literature is to interact the spillover pool with R&D capital or some other measure of the ability to 

absorb outside knowledge, such as the number of R&D professionals employed by the firm. This 

approach can be implemented by re-specifying the output elasticity of the spillover pool as 𝜑 = 𝜑1 +

𝜑2𝐴𝐶𝑖𝑡, where AC is some measure of absorptive capacity, which results in the following estimating 

equation: 

(4) 𝑦𝑖𝑡 = 𝑎0 + 𝛼𝑐𝑖𝑡 + 𝛽𝑙𝑖𝑡 + 𝜃𝑚𝑖𝑡 + 𝛾𝑘𝑖𝑡 + 𝜑1𝑠𝑖𝑡 + 𝜑2𝑠𝑖𝑡𝐴𝐶𝑖𝑡 + 𝜂𝑖 + 𝜔𝑡 + 𝑢𝑖𝑡 

Another possibility is to specify the weights used to aggregate external R&D to capture absorptive 

capacity as well as proximity.   

The stock of knowledge capital (R&D) can formally be an element of 𝑋 or be included in total factor 

productivity, 𝐴. If R&D is considered an input, and markets are competitive, γ should equal the income 

share accruing to R&D. The income share of R&D is not observed, so researchers often transform the 

estimated output elasticity to the private rate of return on R&D to assess the plausibility of the 

estimated parameter. Knowledge spillovers are almost always considered part of TFP. 

In empirical work, equation 2 is frequently replaced with a TFP equation (Table 1). TFP can be calculated 

by constructing a productivity index as in Lychagin et al. (2016) or by subtracting the value of output 

calculated using observed factor inputs and estimated output elasticities from actual output(Cardamone 

 
2We can denote log of firm-level productivity (or TFP) as 𝑎0 + 𝑣𝑖𝑡 . Following Olley and Pakes (1996), the 
productivity term is identified as such by assuming that 𝑎0 + 𝑣𝑖𝑡  is a state variable that affects firms' production 
decisions. 𝑢𝑖𝑡 is an i.i.d. component, reflecting unpredictable deviations from the mean due to external factors 
(e.g. unexpected delays in the delivery of intermediates) or measurement error. 
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2017). The TFP equation usually includes the spillover pool as an explanatory variable and includes the 

stock of own-R&D when it is not explicitly modelled as an input.  

 

If equation 2 is estimated without the absorptive capacity term, the output elasticity of R&D will be the 

same for all firms. Since the marginal product of R&D can be calculated as the product of the output 

elasticity and the ratio of output to R&D capital, an increase in R&D intensity causes the marginal 

product of R&D to decline.3 However, as pointed out by Hall, Mairesse, and Mohnen (2010), firms may 

be operating with different input shares, so it may be appropriate to assume constant rates of return 

 
3 Inclusion of the absorptive capacity term in equation 2 causes inter-firm variance in the output elasticity without 
affecting the finding of diminishing returns to investment in R&D. 

Author Sample Description

Time 

Period Estimator Dependant variable
1

Elasticity or 

rate of return

Industry level studies

Acharya (2015) 17 OECD member countries; 28 

industries (22 manufacturing)

1974-

2002

Dynamic OLS Log value added Elasticity

Goodridge, Haskel & 

Wallis (2013)

7 UK industries 1992-

2007

OLS with industry fixed 

effects

Smoothed TFP 

growth rate

Elasticity

Higon (2007) 8 UK manufacturing industries 1970-

1997

Pooled mean group 

(Dynamic heterogeneous 

ECM panel) 

Gross output 

growth rate

Elasticity

Firm level studies

Aiello & Cardamone 

(2009)

Balanced panel of 1203 Italian mfg 

firms (R&D performers only; 

selection bias correction applied)

1998-

2003

3SLS; 1-year lagged 

values as instruments
Log value added

2 

& factor shares

Elasticity

Bloch (2013) Unbalanced panel of all large firms 

and a sample of SMEs in Denmark

1997-

2005

Fixed effects; lagged 

inputs

log value added 

per employee

Elasticity

Bloom, Schankerman 

and Van Reenen 

(2013)

Unbalanced panel of 715 US firms 

that patented at least once 1963 to 

2001.

1981-

2001
Fixed effects;

3
 lagged 

inputs

Log sales Elasticity

Lucking, Bloom & Van 

Reenen (2017)

Unbalanced panel of 1985 US firms 

that patented at least once 1970-

2006

1985-

2015

Fixed effects; lagged 

inputs

Log sales Elasticity

Cardamone (2017) 3516 Italian mfg firms (cross-

section)

2004-

2006

Spatial autoregressive Log TFP Semi-

elasticity

Lychagin et al (2016) 1383 US mfg firms that patented at 

least once 1970 to 2000 

1980-

2000
Fixed effects

4 Log TFP Elasticity

Medda & Piga (2014) 3077 Italian mfg firms in 21 

industries; correction for non-

random R&D performance

1998-

2000

Instrumental variables TFP growth rate Rate of 

return

Ornaghi (2006) Unbalanced panel of approximately 

2000 Spanish mfg firms in 53 

industries

1990-

1999

SYS-GMM Value added 

growth rate

Elasticity

Sena & Higón (2014) 8617 single plants in UK 

manufacturing (unbalanced panel; 

survivorship bias rejected)

1997-

2002

SYS-GMM Log gross output Semi-

elasticity

Table 1: Key Characteristics of Recent Empirical Studies of Domestic R&D Spillovers

1. Unless otherwise stated production technology is assumed to be Cobb-Douglas and real values are obtained using industry deflators. 2. Translog production 

function. 3. R&D used in spillover pools is instrumented. 4. Results also presented for static and dynamic GMM estimators, with and without common factor 

restrictions.
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rather than constant elasticities, by estimating the rate of return directly. The estimating equation 

relates the change in output (or TFP) to R&D intensity and the ratio of the spillover pool to output 

(among other variables); the coefficients on these variables represent gross rates of return. In 

estimating this equation, it is common to measure R&D intensity using gross investment in R&D, which 

implicitly assumes  that the economic depreciation rate on R&D capital is zero.4 Hall, Mairesse, and 

Mohnen (2010) demonstrate that using gross rather than net investment in a firm-level regression is 

likely to substantially understate the true rate of return on internal knowledge capital. The same point 

applies to the rate of return on the spillover pool.  

While a case can be made that assuming a constant rate of return is more plausible than assuming 

constant elasticities and hence a declining marginal product of R&D capital, most recent empirical work 

estimates elasticities. In the Hall, Mairesse, and Mohnen (2010) survey, about a third of the studies in 

the survey estimated elasticities. In the recent spillovers literature summarized in Table 1, only one of 

the 12 studies (Medda and Piga 2014) estimates the rates of return on R&D directly. Hall, Mairesse and 

Mohnen note that the rate of return estimates are less stable than the elasticity estimates, attributing 

this outcome to highly variable ex post returns to R&D.  

An estimating equation is sometimes developed from equation 1 by assuming a translog production 

function. That approach allows the estimated output elasticities to vary with the level of other inputs – 

separability can be tested, not assumed. Badinger and Egger (2015), in a multi-country industry-level 

analysis, include both internal and external R&D as inputs, and cannot reject the hypothesis that both 

output elasticities are affected by the level of conventional inputs. Similarly, Aiello and Cardamone 

(2009), working with firm-level data in Italian manufacturing, find statistically significant coefficients on 

the input interaction terms in the translog production function. 

2. Econometric Issues 
Estimating a demeaned version of equation 2 with OLS, which uses only the within-firm variation in the 
sample, presents several econometric challenges. These include simultaneity bias that occurs because 
inputs are endogenous rather than strictly exogenous variables; selection bias if only continuing firms 
are included in the sample; and measurement bias caused by the absence of firm-level prices for output 
and inputs.5 
 

2-1. Simultaneity bias 

The simultaneity bias arises because firms decide on input levels based on demand and productivity 
shocks that they experience.6 These productivity shocks are not observed by econometricians, but they 
are correlated with input choices made by firms. As a result, ordinary least squares (OLS) estimates are 
biased and inconsistent. Levinsohn and Petrin(2003) analyse the case where input demand is affected by 
views on the productivity of the input. If productivity shocks are serially correlated, a positive shock will 
increase the demand for variable inputs, which introduces an upward bias to the coefficients on labour 

 
4 See Donselaar, Koopmans, and others (2016) for a detailed comparison of estimating output elasticities and rates 
of return to R&D. 
5 See Van Beveren (2012) for a detailed review of the econometric issues encountered when estimating firm-level 
productivity equations. 
6 See Eberhardt and Helmers (2010) for a comprehensive and intuitive review of the issues raised when estimating 
production functions. Eberhardt and Helmers use the term “transmission” rather than “simultaneity” bias.  
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and materials. Capital is likely to be positively correlated with variable inputs. If so, the coefficient on 
capital will be biased downwards. 
 
Researchers use various techniques to address simultaneity bias. One approach is to assume that there 
is a time-invariant component in firm-specific productivity shocks and estimate equation 2 with a fixed-
effects estimator. If such assumption is correct and if firms are observed over a sufficiently long time 
period, this approach results in consistent estimates that are free of simultaneity bias. Further, if exit 
decisions are determined by firm fixed effects, this approach also addresses selection bias. While fixed-
effects estimation can in principle be implemented through inclusion of dummy variables for individual 
firms (equivalent to OLS on a demeaned equation), equation 2 can also be estimated in first differences 
to eliminate firm-specific effects. This approach tends to increase the problems caused when variables 
are measured with error (Hall and Mairesse 1995). In any case, in a typical situation characterized by a 
large number of cross-sectional units (N) and a short time period (T), using the OLS estimator on a 
transformed equation would result in biased and inconsistent coefficients if strict exogeneity 
assumptions for the factor inputs are not satisfied.   
 
Another approach to addressing simultaneity bias is to instrument inputs when estimating variants of 
equation 2. Effective instruments must be correlated with the inputs, but not with unobserved 
productivity shocks, and cannot enter the production function directly. Potential instruments include 
input and output prices, and variables that shift the demand for output and inputs. However, firm-level 
price data is not generally available and good quality “demand shifters” have been hard to find. As a 
result, “no clear contenders for ‘external’7 instruments have emerged in the production function 
literature” (Eberhardt and Helmers 2016, 9). A number of researchers use one-period lags of inputs, 
ostensibly as instruments, with the fixed effects estimator in order to mitigate simultaneity problems 
(see Table 1). Hall and Mairesse (1995) state that in short panels, one-period lagged values of inputs 
remain correlated with the error term. Reed (2015) formally demonstrates that this approach generates 
inconsistent parameter estimates. 
 
With the difficulty in finding good external instruments as well as the limited success from using one-
period lagged values of inputs as "instruments", an alternative strategy is to make use of a set of 
internally available instruments. Arellano and Bond (1991) formally develop a methodology to estimate 
dynamic panel data models with the generalized method of moments (GMM) in order to recover 
consistent estimates of coefficients on inputs. This approach makes use of first-differencing (FD) or 
forward-orthogonal deviation (FOD) to transform the production equation, which eliminates firm fixed 
effects. Then, one can use suitably lagged dependent and independent variables in levels as instruments 
to correct for simultaneity. Therefore, in theory, we can obtain a consistent estimator for panel data 
with a large number of observations (N) over a short period of time (T). Arellano and Bond GMM  has 
been adopted by a number of researchers examining the returns to R&D, with Hall and Mairesse (1995) 
being an early example.  
 
While Arellano and Bond GMM can mitigate the simultaneity bias in theory, its performance suffers in 
practice when the autoregressive component in each regressor is high (Blundell and Bond 1998). 
Simulation studies indicate that in these circumstances the finite-sample bias is large and coefficients 
are not precisely estimated. These problems arise because the first difference of a persistent series is 
weakly correlated with its lagged levels. They can be substantially reduced by using an extended, or 
system, GMM estimator that assumes stationary initial conditions so that the initial first differences of 

 
7 That is, instruments that are not lagged variables or lagged transformed variables. 
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the variables are uncorrelated with the fixed effect. Estimation involves a combination of transformed 
equations with equations in levels to exploit additional instruments in suitably lagged first differences. 
Based on Monte-Carlo simulations, Blundell and Bond (1998) and Blundell, Bond, and Windmeijer (2001) 
show that the system GMM estimator performs much better in the sense that finite sample bias is 
smaller and precision is greater compared to the Arellano and Bond GMM estimator. 
 
The inclusion of lagged dependent and independent variables in GMM estimators implies some 
restrictions on their values. More precisely, the coefficients on the lagged regressors are non-linear 
combinations of the coefficients on their contemporaneous values and the coefficients on the lagged 
dependent variable. The implicit restrictions on their values – usually described as common factor 
restrictions – can be tested. If they are not rejected, the restrictions can be imposed through a minimum 
distance procedure.8 
 
Olley and Pakes (1996) develop a consistent semiparametric estimator by using the firm’s investment 
decision as a proxy for unobserved productivity shocks that are correlated with input levels. More 
precisely, a non-parametric function (e.g. a higher order polynomial) of investment and capital is used to 
represent unobserved firm-specific productivity. Selection bias is explicitly addressed by including an 
exit rule in the estimating model. A weakness of this approach is that only observations with positive 
investment can be used, which can cause a substantial loss of efficiency in certain data sets (Van 
Beveren 2012). In order to avoid this limitation, Levinsohn and Petrin (2003) use intermediate inputs, 
which are more likely to remain positive for all observations, as a proxy for unobserved productivity 
shocks.  
 
Although the standard knowledge capital model set out in equation 2 recognizes that productivity is 
endogenous, the estimators discussed above make the simplifying assumption that changes in 
productivity are exogenous to the firm. Firm-level productivity follows a random (first-order Markov) 
process. Doraszelski and Jaumandreu (2013) draw attention to the role of investment in R&D in affecting 
a firm’s productivity. In their approach, productivity at any point in time represents an expected 
component arising from R&D investment and an unexpected component arising from random shocks. 
That is, productivity continues to follow a random process that can be shifted by R&D investment. They 
develop an estimator in the spirit of Olley and Pakes (1996) that makes use of labour demand rather 
than investment demand to proxy firm-level productivity. The functional form of the proxy is derived 
from the first-order conditions for profit maximization. 
 
In the Doraszelski and Jaumandreu (DJ) approach, R&D investment rather than capital enters the 
estimating equations. It is therefore not implicitly assumed that knowledge accumulates linearly (and 
with certainty) in proportion to spending on R&D, or that is depreciates by a fixed amount per period, as 
in the knowledge capital model. The DJ model also has the advantage of capturing firm-level differences 
in the response to R&D, so that returns to R&D can be calculated for individual firms or for firms 
arranged groups.9The DJ approach has not yet been modified to include spillovers. Explicitly modelling 
firm-level productivity shocks is clearly of interest, but further analysis and reflection is required to 
determine the advantages of the DJ approach over including R&D as a factor input in the production 
function. If R&D is considered an input and if it does affect firm TFP, the impact of unobserved 
productivity shocks would be diminished. 

 
8 See Eberhardt and Helmers (2016) for a discussion of this point. 
9 The estimation form does not result in an estimated output elasticity or rate of return on R&D. These measures 
must be calculated using estimated parameters and sample data.  
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While concerns about factor inputs, including R&D capital, being endogenous variables are universal, 
opinions are divided on whether the spillover pool is correlated with the error term. As mentioned 
earlier, it is plausible to assume that the spillover pool is exogenous in a competitive market, since firms 
would undertake R&D without considering the activities of other firms. However, even if characterizing 
markets as competitive is realistic, firms may vary their spending on R&D in response to generally 
perceived technological opportunities.10 The resulting improvement in productivity could be incorrectly 
attributed to the spillover measure. In the recent literature, only Bloom, Schankerman, and Van Reenen 
(2013) test the exogeneity of the spillover pool. They develop an instrumental variable for R&D spending 
based on firm-specific changes in the user cost of R&D capital induced by tax changes. The estimated 
spillover output elasticity is not statistically different when spillovers are assumed to be endogenous 
rather than exogenous. 
 
Despite the advances in econometrics, the fixed effects estimator finds considerable favour in the recent 
R&D spillover literature. Out of the 9 firm-level studies summarized in Table 1, four use fixed effects 
estimators (with inputs lagged one period), two use the system GMM estimator, two use instrumental 
variables and one researcher uses a spatial autoregressive estimator.  
 
Two of the studies report results for more than one estimator. Bloom, Schankerman, and Van Reenen 
(2013) report results for OLS and fixed effects estimators in addition to the instrumental variable 
approach discussed above. Using the fixed-effect estimator causes the sign on the spillover coefficient to 
change from negative to positive. On the other hand, with the fixed effects estimator the sum of the 
output elasticities falls from 0.99 to 0.83.  
 
Lychagin et al. (2016) assess a broader range of estimators. They report results using the Arellano-Bond 
first difference GMM estimator for both static and dynamic specifications of a total factor productivity 
equation (with and without common factor restrictions) in addition to results using the fixed-effects 
estimator, which they describe as their baseline results. All specifications have econometric limitations 
but provide (qualitatively) similar coefficient estimates for key variables.11 
 

2-2. Selection Bias 

Selection bias has several dimensions. The most common issue discussed in the literature is what is 

often described as survivor bias. Firms that survive are likely to be more productive or to have more 

capital than firms that exit. This will cause a negative correlation between the error term and the capital 

input (tangible and intangible, presumably) causing the estimated coefficients on capital inputs to be 

biased downwards in a (balanced) sample that consists of continuing firms only. Potential bias of the 

spillover coefficient is not discussed in the literature, but it is possible that more productive firms, or 

firms that have more R&D capital, would be in a better position to absorb spillovers. 

Olley and Pakes (1996) develop an estimator that explicitly takes account of firm-level survivor 

probability in a framework that also corrects for simultaneity. They obtain significantly different 

coefficients with a balanced panel, but the gains are small when the sample is unbalanced.  

 
10 This is the “reflection problem” noted by Manski (1993). 
11 In all GMM specifications, the validity of the moment conditions they impose is rejected. Moreover, they find 
evidence of serial correlation in the error term, further indicating that the moment conditions imposed (i.e. the 
adopted lag structure of instruments) are invalid. The implied common factor restrictions imposed on coefficients 
in their dynamic model are also rejected. 
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Selection issues also arise if the sample consists only of R&D performing firms. In this case the sample is 

no longer random, and the characteristics of firms that choose to invest in R&D may be systematically 

different from firms that do not invest in R&D. The sample may be limited to R&D performers by choice 

or as a result of spillover weighting schemes that implicitly restrict the sample by making the ability to 

benefit from spillovers conditional on performing R&D. Limiting the sample to R&D-performing firms is 

not problematic if the regression results are used to make inferences about R&D-performing firms only. 

Aiello and Cardamone (2009) work with a sample of R&D performing firms. They address the selection 

bias issue by using a probit model to explain the decision to invest in R&D and use the fitted 

probabilities of investing as instruments when estimating the (translog) production function. Medda and 

Piga (2014) include both R&D performers and non-performers in their sample but use the predicted 

values from a Tobit R&D investment model as instruments for (endogenous) R&D in their TFP equation. 

Restricting the sample to firms that patent their inventions also raises selection issues. Bloom, 

Schankerman, and Van Reenen(2013), Lychagin et al. (2016) and Lucking, Bloom, and Van Reenen (2017) 

restrict their sample to firms that have taken out at least one patent, but do not make any adjustment 

for selection bias.  

2-3.  Other sources of bias 

Firm-level prices are not usually available, so most researchers deflate the nominal values of output and 

the factors of production by industry-level price indices.  Unless firms produce a single product and 

operate in competitive markets, firm output and input prices will deviate from industry average price 

levels. If, as seems likely, input choice is correlated with these deviations, input coefficients will be 

biased. More specifically, there will be a downward bias in the estimated coefficients on labour and 

materials and an upward bias in the coefficient on tangible capital (Van Beveren 2012).   

Estimating equation 2 in the presence of multi-product firms causes input coefficients to be biased in an 

unknown direction (Van Beveren 2012). Multi-product firms are likely to use different production 

techniques across their product line and are likely to face different demand conditions for each product. 

Equation 2 assumes identical production techniques for all products and, by using industry output price 

deflators, identical final demand for all products.  

3. Definition of the spillover pool 
Early studies (e.g. Bernstein and Nadiri 1988) defined the spillover pool as the unweighted sum of the 

R&D performed by other firms in the same industry. Bernstein (1988) included pools to capture both 

intra- and inter-industry spillover effects, without weighting any of the outside R&D. The most common 

practice now is to define the spillover pool as a weighted sum of R&D external to the firm, with the 

weights chosen to reflect the potential for firms to benefit from R&D performed by others. Most of 

weighting schemes used fall into three general categories: those based on economic transactions, and 

those based on technological or geographical proximity.  

Weighting schemes based on economic transactions include inter-industry purchases of intermediate 

goods (Cardamone 2017; Goodridge, Haskel, and Wallis 2017), investment in capital goods (Wolff and 

Nadiri 1993), and patent flows between creators and users12 (Los and Verspagen 2000). These weighting 

methods capture, at least in part, productivity gains transferred from other industries because 

 
12 This weighting scheme is often described as the Yale Technology Matrix. 
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producers were not able to appropriate all their benefits.13 They also capture fictitious productivity 

transfers that arise when quality changes are poorly captured in official price data. 

Measures of technological proximity provide a better indicator of pure knowledge transfers. Jaffe 

(1986a) pioneered the use of patent data to allocate a firm’s R&D spending by field of technology and 

developed a methodology to compare the distribution of spending – the technology position – across 

firms. The methodology restricts spillovers to knowledge transfers between firms operating in the same 

technological fields – knowledge transfers cannot occur between different fields, even if they are closely 

related. Bloom, Schankerman, and Van Reenen (2013) extend the Jaffe methodology to allow spillovers 

between closely related fields in their “Mahalanobis extension”. In addition, the Jaffe weighting matrix is 

symmetric – knowledge transfers from firm i to firm j are the same as transfers from firm j to firm i. 

Finally, note that under the Jaffe methodology, only firms performing R&D can benefit from spillovers. 

The Jaffe methodology has been used frequently in recent empirical work (Table 2). In addition to the 

study by Bloom, Schankerman, and Van Reenen (2013) already mentioned, empirical work by Aldieri and 

Cincera (2009) and Lychagin et al. (2016) uses the Jaffe methodology, without the Mahalanobis 

extension. Bloch (2013) also applies the Jaffe methodology, but has access to data on R&D spending by 

10 technological fields, which allows him to expand the scope of the analysis from R&D performers that 

patent to all firms that perform R&D. Aiello and Cardamone (2009) also adopt the Jaffe methodology, 

but use human capital weights to develop an asymmetric technological proximity measure. 

The idea that knowledge transfers are affected by distance has considerable appeal. Despite the ease of 

electronic information flows, the opportunity for planned and spontaneous face-to-face meetings, 

which declines with distance, could facilitate knowledge spillovers. It is, however, important to 

distinguish what Lychagin et al. (2016) describe as the “declining contact with distance” from the 

“decreasing relevance with distance” hypotheses. In other words, knowledge transfers that appear to be 

related to geographic proximity may be the result of a grouping of firms with similar technological 

interests. In addition to facilitating knowledge transfers, agglomeration reduces costs by promoting 

better matches of workers and firms and the sharing of intermediate inputs. Confirming the existence of 

geographic spillovers requires isolating knowledge transfers and demonstrating that such spillovers 

exceed what would be expected given the existing distribution of R&D.14 

Jaffe, Trajtenberg, and Henderson (1993) were the first to test for a geographic component of spillovers. 

Their study finds that patent citations are more likely to occur close to where the inventor resides, even 

after controlling for the existing concentration of technological activity. Buzard et al. (2017) obtain a 

similar result using a similar approach but are able to assign patents and citations to clusters of R&D labs 

rather than relying on information on the declared place of residence of the inventor. Bloom, 

Schankerman, and Van Reenen (2013) test for an independent impact of geography by including both a 

distance-weighted index of technological proximity and an unweighted measure as spillover variables in 

their production function. Both measures are statistically significant, which supports the existence of a 

pure distance effect. The sum of the coefficients on the two spillover variables is not, however,  

substantially different from the coefficient on the spillover variable when it enters the equation alone. 

Lychagin et al. (2016) report statistically significant coefficients on technological and geographical 

 
13 Los and Verspagen assume the matrix captures rent spillovers only, which may be too restrictive. 
14 However, as noted by Jaffe, Trajtenberg, and Henderson (1993) the existing distribution of R&D activity may be 
affected by the potential for knowledge spillovers, so such a test is conservative. 
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proximity spillover measures when entered in the same equation. However, the interaction of the two 

variables does not add to the explanatory power of the equation, suggesting that there is a distinct 

geographic component of knowledge spillovers. Lychagin et al. (2016) demonstrates that differences in 

absorptive capacity influence location decisions, which in turn affects estimates of how quickly spillovers 

decay with distance. 

In contrast to the above studies finding evidence of a pure distance effect, Orlando (2004) presents 

evidence suggesting that reported knowledge spillovers may instead be the result of general 

agglomeration effects. Orlando examines spillovers in a narrowly defined industry. He finds that 

spillovers between firms in the same detailed (4-digit) category are not attenuated by distance, but 

spillovers from outside this category are attenuated by distance.  

In order to benefit from knowledge spillovers, firms must have the ability to identify, assimilate and 

exploit the ideas generated by other firms. Cohen and Levinthal (1989) appear to be the first to formally 

analyse the “two faces” of R&D: one to create knowledge and the other to enhance the firm’s ability to 

absorb new ideas developed elsewhere. Despite its intuitive appeal and the typical finding of a positive 

role for absorptive capacity, not all researchers include it in their empirical analyses of spillovers.15 

A variety of measures of absorptive capacity is found in the literature. A number of researchers measure 

absorptive capacity by including the product of R&D intensity and the spillover variable in the estimating 

equation (Kinoshita 2001, Grünfeld 2004). Aldieri and Cincera (2009) re-specify the spillover output 

elasticity to include an interaction with the stock of R&D, instead of R&D intensity. The estimated 

coefficient on the interaction term is positive and statistically significant. The output elasticities of 

internal R&D and the spillover pool are unchanged but including the interaction term substantially raises 

the output elasticity of tangible capital. 

Bloch (2013) uses the share of R&D personnel in total firm employment and the existence of an R&D 

department as indicators of absorptive capacity, interacted with the spillover variable. While the 

coefficient on the interaction terms with technological spillovers is positive and statistically significant, 

the overall output elasticity of the spillover pool does not change from its value when spillovers enter 

without the interaction term. Sena and Higon (2014) use a measure of the quality of the firm’s 

workforce as an indicator of absorptive capacity. When interacted with the spillover variable, the labour 

quality gap has a statistically significant positive role. The impact is, however, small: the output elasticity 

of spillovers rises 10-15% when interacted with the labour quality variable.  

Ornaghi (2006) hypothesizes that absorptive capacity rises with firm size. She calculates a size-weighted 

intra-industry spillover pool and obtains a small but statistically significant output elasticity. Aiello and 

Cardamone (2009) define the spillover pool using the Jaffe methodology to determine technological 

proximity but impose asymmetric weights by assuming the ability to absorb outside knowledge is 

affected by the level of human capital at each firm. The output elasticity of internal R&D increases 

substantially while the spillover elasticity falls approximately in half when the symmetric measure is 

replaced with the asymmetric version. In addition, the spillover variable is included as in input in a 

translog production function, so the estimated elasticity varies with the level of the other inputs, which 

implicitly captures absorptive capacity. 

 
15 Out of 11 analyses of domestic spillovers published since 2004, only 3 include a measure of absorptive capacity.  
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The spillover variables discussed above are not intended to capture the social loss associated with 

‘creative destruction’ arising from the introduction of new products. A new product generates a social 

benefit because consumers place a higher value on the new product than its production cost. This 

“consumer surplus” is typically shared with firms because the product is priced above its marginal 

production costs -- firms earn rents on new products. Some of this social benefit is at the expense of the 

products that are displaced, and this loss is part of the external return to R&D. These considerations lead 

some researchers (Lychagin et al. 2016) to include a “product market rivalry” spillover measure in the 

production function. However, as pointed out by Bloom, Schankerman, and Van Reenen(2013), product 

market rivalry does not affect production possibilities, so there is no reason to expect it to play a role in 

the production function, provided that output is correctly measured. 

Bloom, Schankerman, and Van Reenen (2013) capture product market rivalry effects on the external 

return to R&D through a separate equation for the market value of firms. In their model, product market 

rivalry raises the private return to R&D without affecting the social return, so the external return on 

R&D is lower when product market rivalry is included in the analysis. 

4. Empirical estimates of private and external returns to R&D 
Hall, Mairesse, and Mohnen (2010) presents a comprehensive review of the literature on estimating the 

private and public returns to R&D, including a review of the theory, practical estimation problems and a 

summary of the empirical results. They report results from 20 studies examining domestic spillovers, 

two of which contain multiple estimates of spillovers. These studies report the output elasticity of the 

spillover pool, the rate of return on the pool or both. The rates of return were estimated directly or 

calculated from the output elasticity.16 Most of these studies report rates of return on own and external 

R&D. Of the 22 estimates available, the median private rate of return is 19% and the external return is 

29%. The private rate of return is gross of depreciation. With a 15% depreciation rate, the median net 

private rate of return appears low. This could be the result of the widespread availability of subsidies for 

performing R&D. The estimated/calculated rates of return represent marginal ex post rates of return to 

R&D. Over the longer term, ex post and ex ante rates of return will coincide, so the estimated/calculated 

rates of return approximate the required gross rate of return on the marginal investment in R&D, 

excluding the impact of subsidies on the private rate of return. 

Almost all members of the Organisation for Economic Co-operation and Development provide 

substantial tax incentives for performing R&D. In 2017, the median tax-based subsidy rate for large firms 

was 14.8% (Lester and Warda 2018) and many countries offer subsidies delivered through spending 

programs as well, which suggests that the private incentive to undertake R&D is substantially 

understated by the estimated/calculated rates of return found in the literature. 

We have found a further 12 studies analysing domestic spillovers published after the Hall, Mairesse and 

Mohnen survey (Table 2). Only one of these studies, Medda and Piga (2014), estimates the rate of 

return directly. Another three studies (Acharya 2015; Bloom, Schankerman, and Van Reenen 

2013;Lucking, Bloom, and Van Reenen 2017) transform estimated elasticities to rates of return. Two 

 
16 The rate of return is obtained by taking the product of the output elasticity and the ratio of output to R&D 
capital. See Donselaar, Koopmans, and others (2016) for a derivation of this result. Researchers use either the 
sample means or medians of output and R&D capital in the calculation. In the more recent literature, Bloom, 
Schankerman, and Van Reenen (2013) and Lucking, Bloom, and Van Reenen (2017) use an R&D-weighted output 
measure.  
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studies (Cardamone 2017; Sena and Higon 2014) estimate the semi-elasticity of the spillover pool. We 

use information provided by Cardamone to calculate the private and external rates of return on R&D 

from the estimated semi-elasticities in her study. The median private and external rates of return in the 

five studies for which rates of return are available are 15% and 22.5%, respectively. Using the estimates 

from all studies, the median private rate of return is 19% and the median external rate of return is 27%. 

A range of estimates for the impact of external R&D is shown for the studies by Acharya (2015) and 

Goodridge, Haskel and Wallis (2013). In these industry-level studies, it is not possible to separate intra-

industry spillovers from the return to internal R&D. When calculating the ratio of external to internal 

returns in Acharya, we assume the internal return includes intra-industry spillover effects. Goodridge, 

Haskel and Wallis decompose the output elasticity of inside R&D into its factor share and a second 

component representing elements that raise the elasticity above the factor share, such as deviations 

from perfect competition, increasing returns and spillovers. These two components are shown in Table 2 

for consistency with other results, but the ratio of external to internal elasticities is calculated assuming 

intra-industry spillovers are all internal, following the authors’ approach.   

Interpreting the return to the spillover pool is not clear-cut when multiple measures are included in the 

same equation. If the measures are not at all correlated, their individual impacts can in principle be 

identified and the overall impact would be given by the sum of the coefficients on the two variables. If 

the two measures are highly correlated, their individual impacts will be difficult to separate and it will be 

difficult to justify summing the coefficients to obtain the overall impact. Aiello and Cardamone (2009) 

take an average of their technological and geographic spillover variables when both measures are 

included in the estimating equation. The coefficient on the average measure is approximately the same 

as when the geographic measure enters alone, which is almost three times larger than the coefficient on 

the technological spillover variable when it appears in the equation. Lychagin et al. (2016) include three 

spillover measures in their equation, capturing technological, geographic and product market rivalry. 

Only the technological and geographical measures are shown in Table 2 since product market rivalry is 

not expected to affect production possibilities. The overall effect shown in Table 2 is the average of the 

two spillover coefficients. 

Two of the studies (i.e. Bloom, Schankerman, and Van Reenen, 2013; Ornaghi,2006) summarized in 

Table 2 provide information on spillovers by size of firm, which is useful to have when assessing the 

desirability of differentiating subsidy rates by size of firm. Some considerations suggest that spillovers 

from R&D performed by smaller firms could be more important than spillovers from large firms. There is 

some empirical support for the view that large firms do more R&D focussed on process and incremental 

product innovation than small firms, which focus more on the development of new products;17 

everything else equal this would suggest higher spillovers from smaller firms. Larger firms are also likely 

to be able to make better use of patents and the development of complementary technologies to 

protect their intellectual property. Knowledge transfer resulting from employee turnover may also be 

less of an issue for larger firms. On the other hand, larger firms may perform more basic research than 

smaller firms and are more active in collaborative research, which would favour greater spillovers. 

Finally, it is possible that the quality of R&D rises with the amount of R&D performed, which would likely 

result in spillovers rising with firm size.  

 
17 See Choi and Lee (2018) for a brief discussion of the literature. 
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Return 

Industry level studies

Acharya (2015) R&D of the 10 most R&D intensive industries, accounting for 

77% of R&D

No 8.5 to 

21.5

0 to 13 16    16 to 

29

0.7

Goodridge, Haskel & 

Wallis (2013)

Flows of intermediate consumption Yes
2 .017 to 

.117

0 to 0.1 0.21 0.21 to 

0.31

1.8

Higon (2007) I/O based estimates of sectoral flows of technology. No 0.331 0.942 0.942 2.8

Firm level studies

Aiello & Cardamone 

(2009)

Technological proximity: human-capital weighted similarity 

index (asymmetric Jaffe). Geographic: distance between 

capitals of provinces where firms operate. 

Yes 0.105 0.136 0.353 0.348
3 3.3

Bloch (2013) Jaffe technological proximity based on declared field of 

research (10 fields)

Yes 0.198 0.096 0.096 0.5

Bloom, Schankerman 

and Van Reenen (2013)

Jaffe technological proximity based on patenting activity 

(426 categories)

No 20.7 34.3 34.3 1.7

Lucking, Bloom & Van 

Reenen 

Jaffe technological proximity based on patenting activity 

(426 categories)

No 13.6 44.1 44.1 3.2

Cardamone (2017) Technological proximity: intermediate input shares; 

geographic: distance between cities where firms are located.

No 0.9 [8.0] [0] [8.7] 16.7 18.6

Lychagin et al (2016) Jaffe technological proximity based on patenting activity 

(410 categories); geographic based on inventor location.

No 0.005 0.627 0.765 1.392 278.4

Medda & Piga (2014) Sum of industry R&D No 119.7 5.5 5.5 0.0

Ornaghi (2006) Intra-industry size-weighted (6 size categories) Yes 0.098 0.021 0.021 0.2

Sena & Higon (2014) I/O based estimates of sectoral flows of technology. Yes 0.012 .0052
4 --

1. Rates of return in square brackets were calculated by the authors of this study. 2. Tested but not significant. 3. The combined effect is the coefficient on the average of the two spillover measures.

4. Semi-elasticity

Table 2: Recent Empirical Estimates of Domestic R&D Spillovers

Author Definition of the spillover pool

Absorptive 

Capacity 

Modelled

Output elasticity  or rate of return on:
1

Internal 

R&D

External R&D



Bloom, Schankerman, and Van Reenen (2013) report that spillovers generated rise with firm size. The 

spillovers generated by firms in the top quartile are almost 75% higher than those generated by firms in 

the bottom quartile. The explanation advanced for this finding is that smaller firms tend to operate in 

technological niches, reducing the scope for knowledge spillovers. The dataset used does not include 

very small firms; the median number of employees in the bottom quartile is 370. 

Ornaghi (2006) investigates spillovers among six employment-size-categories of firms, ranging from 20 

employees or less to 500 or more. In order to distinguish between spillovers generated and received, 

she calculates 11 spillover variables. Ornaghi finds that diffusion occurs more from small to large firms 

than from large to small. Spillovers from small to large firms are up to two times as important as 

spillovers between firms of similar size. Spillovers from large firms to small firms were not statistically 

different from zero, while spillovers from large to medium-sized firms were about half a large as 

spillovers between firms of similar size. The ability to analyse spillovers generated and received by size 

of firm is an important advantage of Ornaghi’s methodology. Her findings suggest that smaller firms 

should receive larger subsidies for performing R&D than larger firms. 

III. Data 

1. Output and conventional inputs 
The basic data source for our analysis is Statistics Canada’s Longitudinal Employment Analysis Program 
(LEAP) data file linked to corporate income tax (T2) files. The LEAP file uses the statistical enterprise 
concept, which includes all entities controlled by the same corporation as the basis for its longitudinal 
structure. As a result, an enterprise may comprise more than one legal entity filing a tax return. The 
LEAP file was designed to analyse firm and employment dynamics, so the data are adjusted to eliminate 
spurious entries and exits caused by mergers, acquisitions and legal restructurings. For example, when 
two enterprises merge, the new entity is assumed to have existed since the organic birth of the oldest of 
the two firms. This approach facilitates the analysis of firm exit and entry, but as discussed below, the 
“disappearance” of firms that eventually merge could affect the ability to analyse some issues.  

The other key data source is information from financial statements submitted by firms with their income 
tax return. These data are collectively described as the General Index of Financial Information (GIFI). 
They include information on, among other items, the value of sales, costs, investment, depreciation and 
the capital stock.  

We measure output as value-added. It is calculated as the sum of labour income from the LEAP file and 
capital income calculated from the GIFI data. While we would have preferred to calculate both measures 
from the same source, data on employment levels, which is used as the labour input in the production 
function, is only available from the LEAP file. To ensure consistency between employment levels and 
labour income, we also use the LEAP file as the source for labour income. Capital income is calculated 
from the GIFI data as operating revenue less operating expenses adjusted to exclude depreciation, 
interest and taxes. Operating expenses are also adjusted to exclude R&D expenses that have not been 
capitalized by firms in order to avoid what Hall, Mairesse, and Mohnen (2010) describe as the 
“expensing bias” – understating capital income by calculating it net of what is treated as a balance sheet 
item. Finally, as recommended by Moussaly and Wang (2014), we make adjustments to ensure that 
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income generated by leased tangible capital is attributed to the firm using the capital rather than the 
owner of the capital.18 

We determine real value-added using industry-specific implicit deflators calculated from data developed 
as part of Statistics Canada’s industry productivity database, often denoted as the KLEMS database.19The 
productivity database provides information for 3-digit North American Industry Classification System 
(NAICS) goods-producing industries and 2-digit service-producing industries.  

We use GIFI balance sheet items to calculate the aggregate net stock of tangible capital for individual 
firms.20 Firms report in GIFI the book value of tangible capital in use along with the accumulated 
depreciation charges against those assets. The GIFI data are available starting in 2000. Unfortunately, 
there is no completely satisfactory way to calculate the real value of the net stock of tangible capital in 
the base year. Book values of the stock and accumulated depreciation are a mixture of historical dollars 
so deflation by any price index will give inaccurate results. We use the industry-specific implicit deflators 
obtained from the industry productivity database to calculate the real net stock of tangible capital. 

Ideally, the labour input would be measured by the number of hours worked. Unfortunately, reliable 
firm-level data on hours worked are not available, so we use an estimate of the number of employees 
developed for the LEAP data file. This estimate is developed by taking the ratio of total payroll to 
average annual earnings of a typical worker in the enterprise’s 4-digit industry, province and enterprise 
size class.  

2. Investment in research and development (R&D)  
We use information submitted by firms in form T661 to claim the federal tax credit for investment in 
scientific research and experimental development (SR&ED) to estimate their spending on R&D. The 
eligibility criteria for the credit are consistent with the definition of R&D set out in the OECD’s Frascati 
Manual. Firms report spending on wages and salaries, materials costs, equipment leasing, equipment 
purchase, expenditures on contracts and “third-party payments” for R&D.21 Investment in structures 
used to perform R&D is not reported. We make a series of adjustments to obtain an estimate that 
includes R&D performed in-house for internal use; R&D performed under contract by other Canadian 
firms that the firm can exploit on an exclusive basis; and, R&D performed by third parties in Canada that 

 
18 In the GIFI accounts, capital lease payments are recorded as income by the owner of the capital, but the leased 
capital appears on the user’s balance sheet. In order to align receipt of capital income and ownership of capital, 
capital lease income is removed from the owner’s account and capital lease payments are treated as capital 
income of the user. (Note that when capital is rented through an operating lease in which the owner retains 
responsibility for repair and maintenance, ownership and the rental income are attributed to the lessor.) A similar 
issue arises with respect to R&D capital, but it is not possible to make a completely satisfactory adjustment in this 
case. 
19 This database provides information from 1961 to 2014 for multifactor productivity based on gross output and 
value added. It also provides data on gross output, value added as well as capital, labour and intermediate inputs. 
The database is described in Baldwin, Gu, and Yan (2007) and the data can be accessed through Cansim table 383-
0032. The acronym KLEMS is used to draw attention to the fact that the database provides information on capital 
(K), Labour (L), energy (E), Materials (M) and services (S) inputs. 
20 Tangible capital includes assets with a physical form (e.g. buildings, land, and machinery and equipment). R&D is 
the only intangible asset included in our analysis.  
21 Contracts and third-party payments are distinguished primarily by the degree of control over the performance of 
the R&D exercised by the payer and the right to use the R&D. In a contract, the payer has complete control and 
exclusive use of the R&D while in a third-party payment, the performer has control over the performance of the 
R&D and the payer has non-exclusive rights to exploit the results of the R&D. 
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the firm can exploit on a non-exclusive basis. We do not capture spending on R&D outsourced to non-
residents. 

Data on R&D spending is also available from Statistics Canada’s survey program Research and 
Development in Canadian Industry (RDCI). As discussed in Box 1, the RDCI is a more comprehensive 
source of R&D spending than the tax data. However, starting in 2014 the RDCI shifted from a census to 
survey approach. As a result, it is not possible to construct a complete longitudinal data set of firms 
performing R&D after 2013, which makes the RDCI a less interesting source to use over the longer term. 

The real value of spending on R&D is calculated using industry-specific implicit deflators developed by 
Statistics Canada. These deflators are based on a subset of input costs – labour costs of R&D personnel 
and the cost of intermediate materials. The deflator for labour costs is based on an index of hourly 
compensation in occupations likely to be involved in the performance of R&D. The deflator for materials 
is a weighted average of the KLEMS price indices for the materials used in the performance of R&D.  

Box 1: The Research and Development in Canadian Industry Survey 

R&D spending estimated from the tax data differs in coverage from Statistics Canada’s survey 
program Research and Development in Canadian Industry (RDCI) which is a more comprehensive 
source. On the other hand, since firms have a financial incentive to report R&D spending to the tax 
authority, the tax data may capture more firms than the RDCI survey. 

The main differences between the two data sources are: 

• The RDCI includes R&D outsourced by Canadian firms to non-residents. On average from 
2000 to 2012, foreign outsourcing amounted to 6.3% of other owned R&D performed in-
house. 

• The RDCI includes spending on buildings and land, which are not in the tax data because such 
spending is not eligible for the SR&ED investment tax credit. However, in 2014, the first year 
such information is publicly available, spending on buildings and land amounted to just .4% 
of total R&D spending. 

• The RDCI includes spending by firms that do not claim the SR&ED, either because they 
choose not to or because they are not-for-profit enterprises.  

• As of 2008, the tax data includes, in certain circumstances, R&D performed by a foreign 
affiliate/subsidiary outside of Canada. 

• In the tax data, firms have the option of reporting overhead expenses as incurred or as a 
percentage of wage costs. Having this option may result in higher reported expenditures on 
R&D. 

 At an aggregate level, the tax data used in this report capture owned R&D that is performed in 

Canada. The tax data is greater than the corresponding measure obtained from the RDCI survey in 

nine of the thirteen years in our sample. The average difference relative to the RDCI data is 1.2% and 

the range is 5.1 % to -5.4%. 
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2-1. Depreciation and the stock of knowledge capital 

Data on firm-level spending on R&D are available from 2000 to 2012. In order to calculate the net stock 
over this period, we need an estimate of the depreciation rate and of the beginning-of-year stock in 
2000. In the literature, a 15% depreciation rate is typically assumed, although the evidence is 
accumulating in favour of a higher rate. Huang and Diewert (2011) develop a model that incorporates 
imperfect competition and in which R&D is a technology shifter rather than an input to the production 
process. Estimating this model with US data, they obtain a depreciation rate of 29% for R&D undertaken 
in manufacturing. The results are described as preliminary. Li (2012) develops a forward-looking profit 
model to estimate depreciation rates for R&D undertaken in 10 US industries. The rates range from 10 
to 43%, with only one estimate below 15%. 

Hall, Mairesse, and Mohnen (2010) makes the point that the depreciation rate used will not have much 
impact on the estimated parameters of a production function if firm-level growth in R&D spending and 
depreciation rates are relatively stable over time. In this case, differences in the level of rates can be 
captured in firm fixed effects in the regression equation so the elasticity of output to the stock of 
knowledge capital will be little affected.22 As a result, we make the conventional assumption that 
knowledge capital depreciates at 15% per year. 

The standard approach in the literature to estimating the initial capital stock is summarized in equation 
5, which is derived assuming that the growth rate of the capital stock can be approximated by the 
growth rate of investment.23 

(5)     𝐾𝑖2000 ≈
𝐼�̅�

𝑔𝑖
∗ + 𝜕𝑖

 

In equation 5, 𝐼�̅� and 𝑔𝑖
∗are measures of the equilibrium level and growth rate of investment in R&D by 

firm i, respectively. These equilibrium values are usually approximated using partial or whole period 
sample averages of firm-level data. We estimate 𝐼�̅� as the average R&D investment over the 2000-2002 
period. As discussed below, we use an alternative approach that makes use of both firm and industry-
level growth rates to calculate 𝑔𝑖

∗. 

Equation 5 can only be used with confidence for firms that perform R&D consistently over the 2000-12 
period and that have been in existence for long enough that their initial investment is fully depreciated 
by 2000. Firms can be identified in the T2-LEAP data base from 1984 forward. With a 15% depreciation 
rate, the value of R&D performed in 1984 would have fallen by about 93% by 1999. We can therefore 
use equation 5 to calculate the initial R&D stock for firms born in 1984 or earlier. In doing so, we are 
assuming that R&D spending grew at an average annual rate 𝑔𝑖

∗ over this period. 

For firms that were born from 1985 to 1999 and that performed R&D continuously from 2000 to 2012, 
we adjust equation 5 to account for the shorter investment period.24 We also adjust the trend growth 
rate of R&D for firms that did not perform R&D continuously from 2000 to 2012. The trend growth rate 

 
22 On the other hand, the net returns to own and external R&D, which are calculated from the estimated elasticity, 
are affected by the depreciation rate.  
23 The accounting identity 

𝐾𝑡−𝐾𝑡−1

𝐾𝑡−1
=

𝐼𝑡

𝐾𝑡−1
− 𝜕 can be solved for the lagged net capital stock  𝐾𝑡−1 =

𝐼𝑡

𝑔𝑘+𝜕
 , where gk 

is the growth rate of the capital stock. In equation 4 in the text, gk has been replaced by the growth rate of 
investment. See Berlemann and Wesselhöft (2014) for a discussion of various ways to approximate the initial 
capital stock. 
24 We use a standard formula for the future value of a series growing at a constant rate 𝑔 for 𝑛 periods and 

depreciating at a constant rate δ.  𝐾𝑖2000 = 𝐼�̅�/(1 + 𝑔𝑖)
𝑛 ⌊

(1−𝜕)𝑛−(1+𝑔𝑖)
𝑛

−𝜕−𝑔𝑖
⌋ 
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for these firms is more likely to take a negative value than for continuous performers, which will cause 
the estimate of the initial stock to take on negative or extremely large positive values when the absolute 
value of the growth rate is greater than or smaller than but close to the depreciation rate.25 For firms 
born in 2000 or later, the R&D capital stock is calculated using observed R&D investment starting in their 
birth year. 

In calculating the 𝑔𝑖
∗, we depart from the standard practice of using average firm-level growth rates in 

favour of what has become known as James-Stein Estimators (JSE). Stein (1956) proved the counter-
intuitive proposition that the arithmetic average is not always the best estimator of unobserved 
quantities. This insight has been applied in several fields; in our case the implication is that the best 
estimator of future growth in R&D spending by a firm may not be the average of its past growth rates. 
Better estimates, in the sense of lower mean squared error, may be obtained by “shrinking” the mean 
values to a point selected based on prior notions of the true equilibrium growth rate. 

We experiment with various shrinkage points and assess their performance by comparing the resulting 
estimate of the aggregate R&D stock in 2000 with its value calculated from official surveys of R&D 
spending. We also compare estimates derived from maximum likelihood estimators, such as the firm-
level sample average. Our firm-level methodology estimates the stock of R&D capital of firms in 
existence in 2000, but the estimate using aggregate data includes R&D performed by firms that exited 
over the 1984-99 period. To get an idea of the importance of this bias, we calculated the percentage 
increase in the stock of R&D capital in 2012 when we include the R&D performed by firms that exited 
over the 2000-12 period. 

The JSE is presented in equations 6-8. 

(6) 𝑔𝑖
∗ =  �̅� + 𝑐𝑖(𝑔𝑖 − �̅�) 

where 𝑔𝑖
∗ represents our estimate of the equilibrium growth rate in R&D spending for firm 𝑖; �̅� is the 

shrinkage point; 𝑔𝑖 is the average annual growth rate from 2000 to 2012 for firm 𝑖; and 𝑐𝑖 is the 

shrinkage factor, defined as: 

(7)  𝑐𝑖 = 1 −
(𝑛−3)𝜎𝑖

∑ (𝑔𝑖−�̅�)2𝑛
𝑖=1

 

where n is the number of firms and 𝜎𝑖 is the standard deviation in annual growth rates for firm 𝑖: 

(8)  𝜎𝑖 =
1

𝑇𝑖
∑ (𝑔𝑖𝑡 − 𝑔𝑖)

2𝑇𝑖
𝑡=1  

where 𝑇𝑖 is the number of years firm 𝑖 has a non-missing annual growth rate in R&D spending.  

Equation 7 and 8 imply that the shrinkage factor would differ across firms, varying inversely with the 

standard deviation of firm-level annual growth rates. A large standard deviation implies a high degree of 

uncertainty in our measurement and hence, we attribute any large growth rate more to random 

fluctuations than to a genuinely large equilibrium rate.26 Equation 8 also accounts for different degrees 

 
25 For non-continuous performers, we calculate the growth rate leaving out increases from zero and/or declines to 
zero. For all firms we set a floor for the average annual growth rate of -8.3% , which is the 2000-12 average annual 
growth rate based on the change in R&D investment from 2000 to 2012 (i.e. -100%/12) for a firm that performs 
R&D in 2000 but not in 2012.  
26 See Efron and Morris (1977) for detail. The authors provide an example for varying shrinkage factors using their 
analysis on the distribution of the disease toxoplasmosis in El Salvador at the city-level.  
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of uncertainty in estimating firm-level equilibrium growth rates stemming from different sample sizes 

for each firm (i.e. different numbers of annual observations within firms).  

Note that the shrinkage factor (c) can take a negative value for some firms. As proposed in Baranchik 

(1964), we constrain the shrinkage factor to be positive, which is commonly called the positive-part 

James-Stein estimator.27 This simple modification provides a JSE-dominating estimator (i.e. it performs 

better than the standard JSE based on some decision rule such as mean squared errors).  

We calculated 𝑔𝑖
∗ using three different shrinkage points. 

1. The “grand average” of firm-level growth rates – the average of all firm-level average annual 
growth rates.28 

2. The unweighted average of firm-level average annual growth rates within industries. 
3. The average annual growth rates in industry-level R&D spending. 

It may not be correct to specify a single shrinkage point relevant for all firms. It may be that equilibrium 

rates are heterogeneous across industries. Hence, for the second and third choice, our prior notion is 

that the equilibrium growth rate in R&D investment can be related to the industry in which a given firm 

operates.29 Specifically, we define  the shrinkage point and the shrinkage factor for each firm using 

statistics defined based on the firm's 4-digit NAICS industry. That is, we use 𝑛𝑘 and �̅�𝑘 where 𝑘 denotes 

4-digit NAICS industry.30 

Using published aggregate investment data, we estimate that the stock of R&D capital in 2000 was $69.6 

billion (in 2007 dollars). Including R&D performed by firms that exited over the 2000-12 period increases 

the stock of R&D capital in 2012 by 14.6%. If the same relationship applied in the 1984-99 period, our 

aggregate benchmark for the stock of R&D capital of firms in existence in 2000 should be reduced by 

14.6% to $59.4 billion. All three estimates based on firm-level data are less than our adjusted 

benchmark. Using shrinkage points 1 and 2 results in initial stock estimates that are too low given our 

estimates of the R&D capital likely to be missed using our methodology. However, when the shrinkage 

point is defined as the average annual growth rate in industry-level R&D, the 2000 R&D capital is 

estimated to be $56.5 billion, which is only 4.8% lower than our benchmark level.   

We also compare estimates of the initial stock obtained using the JSEs with various maximum likelihood 

estimators (MLEs). The first is setting 𝑔
𝑖
∗ equal to the sample average annual growth rate of firm 𝑖. We 

also set 𝑔
𝑖
∗ equal to the average of all firm-level average annual growth rates in a given industry and to 

the average annual industry level growth rate.31 However, the three options result in estimates of the 

initial capital stock that are either very large or very small compared to our benchmark.   

In our econometric analysis, we use estimates of the initial stock of R&D based on the third shrinkage 

point. As discussed below, however, the qualitative results for the rate of return on internal and external 

 

27 This can be represented as:  𝑐𝑖 = (1 −
(𝑛−3)𝜎𝑖

∑ (𝑔𝑖−�̅�)2𝑛
𝑖=1

)
+

. We replace any negative value for 𝑐𝑖  with zero.  

28 This is similar to the approach adopted in Efron and Morris (1977). 
29 This is similar in nature to the multiple shrinkage framework suggested in George (1986). 
30 We also tried different levels of NAICS industries (e.g. 2-digit NAICS) but we found no difference in our 
estimates. 
31 The last two are equivalent to setting the shrinkage factor in variants 2 and 3 to zero. 
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R&D are not particularly sensitive to using estimates based on shrinkage points 1 and 2 and the three 

MLEs experimented above. 

2-2. Double-counting of R&D inputs 

Starting with Schankerman (1981), there is a long tradition in empirical work estimating the rate of 
return on R&D of correcting for the “double-counting” of R&D inputs.32 The argument is that the 
tangible capital and labour used to create R&D capital are also included in the conventional inputs. We 
are not persuaded that this correction is necessary. To see our point of view, it is useful to think of 
output as consisting of consumer and capital goods. The existing capital stock and labour are used to 
produce both types of output and the newly produced capital becomes an input when it is available for 
use. The current labour input is always being used to produce output, so adjusting it to eliminate the 
labour used to create the capital asset would not be appropriate.33There is an exact parallel for R&D 
prepared under contract for another firm: output of the performing firm rises, and the R&D capital of 
the purchasing firm increases. When a firm performs R&D in-house, its output rises when the 
expenditure is made, whether the R&D is capitalized or not. 

This line of argument draws attention to the fact that newly produced tangible and intangible capital 
may not be available to produce output in the period they are created. Li (2014, page 11) reports an 
average lag of two years between performing R&D and receiving revenue from investment in R&D for 
the US economy. Such a gestation lag suggests that only a small portion of current-period R&D will be 
used to produce output. Some tangible capital will also be in process over an extended period before it 
becomes available to produce output. As a result, lag structures on capital inputs should be explored 
when estimating production functions. 

3. Data cleaning 
Our data set consists of all firms that receive a tax credit for performing or purchasing R&D in Canada at 

least once over the 2000-12 period. From this population, we retain the firms that provide enough 

information to identify their technology position.34 Based on this sample, we construct our spillover 

pool.  

Our first step in cleaning this sample for the estimation of our regression equations was to remove any 

observations for which tangible capital is negative, zero or missing. Observations for which value added 

is missing are also dropped.35 In our sample, a small number of observations have negative value added. 

Few of these observations appear to result from measurement error. In most cases, these observations 

arise because startups and firms facing competitive pressures experience losses that exceed their wage 

bill, resulting in negative value added. In principle, these observations should be kept in our sample, but 

since we estimate a production function in logs, negative observations must be excluded or transformed 

in some way. We experimented with the inverse hyperbolic sine transformation, which is of interest 

 
32See for example, Cuneo and Mairesse (1983), Hall and Mairesse (1995), Peeters and Ghijsen (2000), and Hall, 
Mairesse, and Mohnen (2010). 
33 Note also that when R&D is considered a capital rather than a current expenditure in the Canadian system of 
national accounts, adjustments are made to eliminate the “expensing bias” but no adjustments are made for 
double-counting the inputs used to create R&D. 
34 We discuss the possibility of selection bias introduced by our sample selection in the following section. 
35 There are no observations with zero value added. Also, all observations of employment (proxied by an average 
labour unit) are positive in our sample. We set observations of R&D capital with zero value to one so that ln(R&D 
capital) = 0. Firms that start performing R&D after 2000 will have zero R&D capital until they start performing R&D. 
We include a dummy variable in the estimating equation indicating observations with zero R&D capital. 
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because it approximates the natural logarithm of a variable while allowing observations with values less 

than or equal to zero to be retained.36 Results using this transformation were, however, unsatisfactory. 

The transformation resulted in implied output elasticities of factors inputs that are inconsistent with our 

prior knowledge -- we obtain very large positive or negative coefficients on the inputs.37 As a result, we 

dropped all observations with value-added less than or equal to zero.  

The ratio of output to R&D capital (evaluated using mean values) is used to transform estimated output 

elasticities into rates of return. The impact of outliers on this statistic is therefore of interest. To test the 

sensitivity of this ratio to outliers, we examined the impact of removing successively larger slices of both 

tails of the distribution for the value added to R&D capital ratio. We found that removing successively 

larger slices of the top tail (observations with very low R&D intensity) affected the magnitude of the 

estimated coefficients while having no impact on the ratio. The opposite was found for removing 

successively larger slices of the bottom tail (observations with very high R&D intensity) – the ratio was 

affected without having a substantial impact on the coefficients. We dropped the top and bottom 2% of 

the distribution since subsequent 0.5%-point increases in the cut-off had little or no impact on the ratio 

and the coefficients.38  

The trimmed sample is characterized by many small firms accounting for a small share of the R&D 

performed in the economy and a small number of large firms accounting for a large share of the R&D 

performed. Firms in the bottom quartile account for roughly 1% of the R&D stock while firms in the top 

percentile account for 75% (Table 3). Similar patterns are found in terms of R&D spending.  

To investigate whether very small firms have an impact on estimated coefficients, we estimated the 

augmented production function with the trimmed sample and with successively larger slices of the 

smallest firms removed. The only coefficient affected by this process was the output elasticity of 

labour.39 This coefficient increased to a non-negligible extent when firms with less than one employee 

were removed but remained stable when additional smaller firms were trimmed from the sample. 

Removing these micro-firms raised the sum of all input coefficients closer to one, although constant 

returns to scale is still rejected. These mini firms were dropped from the regression sample as they 

appear to use a different production technology than the rest of the firms.40 

 

 

 

 
36 See Bellemare and Wichman (2018) for a discussion. 
37 The transformation is ideal when we have non-negative values or negative values close to zero. In our case, 

there are many observations with quite large negative values, resulting inan undesirable property (i.e. the 

transformation is convex over negative values when the assumption of diminishing marginal product is desirable) – 

see (Ravallion 2017). To avoid this, one can apply the ordinary hyperbolic sine transformation to negative 

observations and the inverse transformation to positive observations. However, this approach “de-stabilizes” (or 

increases) the variance of the transformed variable (Ravallion 2017).  
38 Trimming the data, however, has no effect on the qualitative results in this paper. 
39The output to R&D capital ratio is unaffected. 
40As we discuss later, dropping these mini firms does not change the qualitative results in this paper. 
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Table 3: Share of total R&D Stock by Firm Employment Size 2000-2012 

Size Percentile Range Share of Total R&D stock (%) 
 

Share of Total R&D spending (%) Mean Employment 

<25% 1.3 

2.2 

3 

25%<x<95% 23.3 28.5 41 

95%<x 75.4 69.3 1,553 

Note: Employment is in terms of average labour unit. See text for definition. 

 

Dropping observations with negative value-added results in an asymmetric treatment of gains and losses 

from investing in R&D and tangible capital. For startups and other firms developing new products, we 

ignore losses in the development period, including only the period of positive returns, assuming the firm 

survives. For established firms suffering declining sales or downward pressure on prices, we do not 

include those observations for which the return to capital is sharply negative, but we do include the 

positive observations. This puts downward pressure on the rate of return to R&D. On the other hand, 

the observed elasticity of value-added to R&D could be spuriously highor low as value-added shifts from 

negative to positive due to rising sales. The net impact on the rate of return to R&D therefore cannot be 

determined a priori. As an empirical test, we estimated the production function excluding firms that 

experience negative value-added at any time over the sample period, observing an increase in the 

output elasticity of own-R&D.  

IV. Constructing the spillover pool 

1. Technological proximity 
In this paper, we use two measures of technological proximity. The now-standard approach developed 

by Jaffe (1986) defines technological proximity by comparing the distribution of R&D spending by 

technological category across firms. If there are k technology areas, the technology position of firm i can 

be characterized by a vector Fi = [Fi1Fi2 …Fik] where Fik is the fraction of firm i's total research 

expenditure devoted to area k. The proximity of firm i and firm j, denoted as 𝑃𝑖𝑗, can be measured as 

the uncentred correlation of firms’ technological positions: 

(9) 𝑃𝑖𝑗 = 𝐹𝑖𝐹𝑗
′/[(𝐹𝑖𝐹𝑖

′)( 𝐹𝑗𝐹𝑗
′)]

1/2
 

where F′ is the transpose of F. 

The proximity measure (a scalar) has the following properties: it is unity for firms whose position vectors 

are identical; it is zero for firms whose position vectors are completely unrelated, or orthogonal; and, it 

is bounded between 0 and 1 for all other pairs.  

Bloom, Schankerman and Van Reenen (2013) introduce the “Mahalanobis extension” to overcome the 

restriction that knowledge transfers cannot occur between different fields, even if the fields are closely 

related. This extension allows spillovers between different technology areas by weighting the standard 

Jaffe measure by the closeness of different technology areas. The proximity of technological areas is 

based on how frequently they coincide within firms in the sample. For example, if many firms spend 
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money on research in technology area 𝑥 and 𝑦 at the same time, then 𝑥 and 𝑦 would have a correlation 

coefficient that is close to 1. 

This weighting scheme implies that firms with diverse research areas benefit from outside R&D to a 

greater extent than under the standard Jaffe method. A firm operating in several research fields has 

lower potential spillover benefits using the standard methodology because diversity reduces the size of 

each element of its position vector. 

A technical description of the two proximity measures used in this paper is provided in the Appendix. 

Using the measure of technological proximity 𝑃𝑖𝑗, we compute the spillover measure for firm 𝑖 at time 

𝑡as the weighted sum of R&D stock of all other firms: 

(10) 𝑆𝑖𝑡 = ∑𝑃𝑖𝑗𝐾𝑗𝑡

𝐽

𝑗≠𝑖

 

where 𝐾𝑗𝑡 is the R&D stock of firm 𝑗 ≠ 𝑖 at time t. 

Note that the spillover measure at time 𝑡 is constructed based on total R&D stock at time 𝑡 weighted by 

a technological proximity weighting matrix. Our spillover measure does not keep the knowledge stock of 

exiting firms. If a firm exits, its knowledge is assumed to disappear from the economy.  

However, R&D performed by firms that exit could still be a source of knowledge for the surviving firms in 

the economy. Hence, we experimented with an "augmented" spillover pool that includes the R&D 

capital stock of firms that exit.41 Using this knowledge pool, neither the estimated coefficients for the 

aggregate spillover pool and the pool by size of performer nor their statistical significance changed. 

2. Measuring technological proximity 
Since 2008, firms have been required to report spending by field of research when applying for R&D tax 
credits. Information is presented for four major categories, 28 sub-categories (represented by a 3-digit 
code) and 147 detailed technological fields (represented by a 5-digit code). Having access to such data is 
unusual: to our knowledge, Denmark is the only other country that gathers such information, and only 
one researcher (Bloch 2013) has exploited it. Defining technological proximity in terms of R&D spending 
has a considerable advantage over the more usual approach of defining proximity in terms of patenting 
activities since it allows all R&D performers to be included in the analysis. 

We constructed Jaffe-inspired technological proximity measures using the most detailed technology 
information (i.e. 5-digit field codes), with and without the Mahalanobis extension developed by Bloom, 
Schankerman, and Van Reenen (2013) discussed above. We also constructed separate spillover pools 
generated by small and large firms. Firms eligible for the federal enhanced SR&ED investment tax credit 
were classified as small and those firms receiving the regular credit were classified as large.42This 
definition allows us to assess whether the different subsidy rates by firm size are appropriate. 

 
41 We depreciate R&D capital of existing firms by 15 per cent annually. We construct the augmented spillover pool 
by size of performer. To determine the size group for firms that exit, we rely on the last observed size group. That 
is, we rely on the net income and tangible capital stock observed in the last observed year and apply the eligibility 
criteria for enhanced tax credit applicable to that year.  
42Eligibility for the enhanced credit is determined by the amount spent on R&D, profits and assets. In 2012, the 
maximum amount of R&D spending eligible for the enhanced credit was $3 million. This amount was reduced to 
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The quality of the data on spending by technological field is good. Annually, about 70% - 77% of the 
firms that own R&D capital representing 90% - 98% of R&D capital provided complete information over 
the 2008-12 period. A small number of other firms provided enough information to allow us to develop 
completely satisfactory measures of their spending by technological field.43 As a result, our technological 
proximity measures cover approximately 95% - 98% of R&D capital on average over the 2008-12 period. 
When we extend the calculation back to 2000, the share of firms captured in our proximity measure falls 
since we cannot perform the calculation for firms that exited prior to 2008. However, the share of R&D 
captured remains in the 92% - 96% range over the 2000-07 period.44 

We do not introduce any substantial selection bias by dropping firms without enough information for 
technology position.45 The distributions of labour and capital inputs and value-added in our sample are 
very similar to those for R&D performers in T2-LEAP. In addition, distributions by size of firm (small 
versus large) and by industry are almost identical in the two data sets. Nevertheless, extending the 
technological proximity measures to the 2000-07 period will provide useful results only if firms change 
research fields slowly over time. This is a plausible hypothesis since expertise in various areas is not 
easily acquired and involves large sunk costs. Bloom, Schankerman, and Van Reenen (2013) compare 
results when proximity is measured using data over the whole sample (1963 to 2001) and using data 
from 1970 to 1980. The results are described as reasonably similar because firms changed research 
fields only slowly over time. In our sample, we observed that firms tend to operate in the same small 
number of fields over the 2008-2012 period;46 they rarely enter a new field. 

Table 4 provides some basic descriptive statistics for the key variables used in our analysis by size of 
firm. Compared to small firms, not surprisingly, large firms have larger means for output, tangible capital 
stock, and employment but with much more variation within the size group as indicated by the standard 
deviation. Moreover, we observe that large firms have much larger means for both R&D spending and 
stock. This is consistent with Table 3, which indicates that a small number of very large firms account for 
a disproportionately large share in total R&D stock, resulting in a high mean value for R&D capital. 
However, combined with their mean output level, larger firms have lower R&D intensity and therefore a 
higher output to R&D capital ratio.  

The mean spillover pool (both aggregate and by size) is greater for small firms, implying that small firms 
have greater access to the external knowledge stock. Since the spillover pool is a technology-weighted 
sum of external R&D capital, the greater size implies that small firms perform R&D in the same or similar 
technological fields as other firms to a greater extent than larger firms.  

 

 

 
zero as taxable income increased from $500,000 to $800,000 and as capital increased from $10 million to $50 
million. 
43 We can calculate spending for firms that submit incomplete or missing spending by project if they are working in 
a single technological field. We cannot make approximations for two categories of firms: those for which field 
codes are missing, invalid or provided only for a subset of projects underway in a given year; and those working in 
more than one field providing complete field codes but incomplete expenditure data by project.  
44 The number of observations in this sample ranges from 20,000 to 34,000 annually over the 2000-12 period; the 
number of unique firms in the panel is about 38,000. Based on this sample, we construct our spillover pool.  
45 See Appendix 1 for a detailed description of our sample selection process. 
46 On average over the 2008-12 period, firms undertook research in 1.33 fields. 
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Table 4: Summary Statistics, Estimation Sample, Small and Large Firms, Millions of 2007 
CAD, 2000-2012 

  Small firms  Large firms 

  Mean Std. Dev. Mean Std. Dev. 

Value added 5.8 168 578 3,140 

Tangible capital stock 20.3 3,750 1,550 19,300 

Average labour unit 52 415 1,490 4,576 

R&D spending 0.2 4.1 8.8 48.2 

R&D stock 1.3 24.1 54.9 336.0 

Spillover pool 5,600 5,390 5,080 4,600 

Spillover pool by Small 2,710 2,590 2,280 2,190 

Spillover pool by Large 2,890 3,470 2,800 2,940 

Spillover pool (Mahalanobis) 6,250 5,640 5,670 4,860 

Spillover pool by Small (Mahalanobis) 3,010 2,740 2,540 2,320 

Spillover pool by Large (Mahalanobis) 3,240 3,580 3,130 3,060 

Net income 0.2 44.7 110 553 

Mean(value added)/Mean(R&D 
stock) 4.54 10.53 

No. Observations (firm x year) 272,355 10,835 
Note: Except for net income, all dollar-value variables are deflated using the KLEMS 4-digit NAICS 
output/input/R&D deflators. Other statistics such as median, min., and max. are not reported due to confidentiality 
constraints. 

 

V. Estimation framework and results  
In this section, we report the results from estimating a Cobb-Douglas production function based on a 

static and dynamic specification respectively. In the static specification, we adopt OLS with firm and year 

fixed effects to estimate the coefficients. However, even with fixed effects, we suspect endogeneity 

problems in the factor inputs as discussed in section II. To mitigate such problems, in the dynamic model 

in which we allow unobserved firm-level productivity shocks to follow an AR(1) process, we estimate the 

coefficients with a broader range of estimators (i.e. OLS, FE, and GMM). 

1.Static specification 

1-1. Model  

We estimate variants of equations 2 using ordinary least squares with firm and year fixed effects. The 

baseline equation is reproduced below. 

(3) 𝑦𝑖𝑡 = 𝑎0 + 𝛼𝑐𝑖𝑡 + 𝛽𝑙𝑖𝑡 +  𝛾𝑘𝑖𝑡 + 𝜑𝑠𝑖𝑡 + 𝜙𝑞𝑡 + 𝜂𝑖 + 𝜔𝑡 + 𝑢𝑖𝑡 

In equation 3, 𝑦 is value added, 𝑎0 is mean efficiency across all firms, 𝑐 is tangible capital, 𝑙 is the labour 

input (employment, proxied by average labour units), 𝑘is R&D capital, 𝑠 is the spillover pool, η captures 

time-invariant firm-fixed effects, ω represents aggregate productivity shocks, proxied by year dummies, 

and 𝑢 is a random error. As in Bloom, Schankerman, and Van Reenen (2013), we include industry-level 

value-added (𝑞) to control for industry demand shocks. All variables are in logs.  

We began our empirical investigation by estimating equation 3 over the 2000-12 period for an 

unbalanced sample of R&D performers and using both the Jaffe and Mahalanobis-extended proximity 
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weights calculated using five-digit technology field codes (147 fields). While our dataset is adjusted for 

the effects of mergers, acquisitions and legal restructurings, entries and exits remain a potential source 

of selection bias, prompting us to work with an unbalanced panel. Our sample is restricted to R&D 

performers primarily because our modelling framework assumes that only R&D performers can benefit 

from spillovers.  

The choice of estimation period involves a trade-off between measuring the R&D stock with error and 

reducing the efficiency of the fixed-effect estimator by shortening the length of the panel. An increased 

susceptibility to inconsistency is another cost of shortening the panel. As discussed above, the initial 

stock of R&D for firms entering prior to 2000 is only an approximation, but the starting value becomes 

less important over time as a result of depreciation. For example, by 2010 about three-quarters of the 

imputed value of R&D capital in 2000 has been depreciated, causing the potential importance of 

measurement error to decline substantially. On the other hand, the efficiency of the fixed effect 

estimator falls dramatically as the length of the panel shrinks from 13 to 3 years. This loss in efficiency 

occurs because the fixed effect estimator uses variations over time within each firm rather than 

variations between firms. 

1-2. Results 

The output elasticities for labour and tangible capital obtained at this stage were consistent with prior 

notions of income shares. The sum of the coefficients on all three inputs was close to one but the 

hypothesis of constant returns to scale was rejected, a finding that was repeated in all static production 

equations subsequently estimated. We also used a random-effects estimator but conducting a Hausman 

test led us to reject the null hypothesis that the unique errors are not correlated with regressors (i.e. 

reject the null that the random effect estimator is preferred). As a result, all our subsequent 

econometric analysis is based on the fixed-effects estimator.  

Table 5: Production function regression results, static specification with fixed 
effects 

 (1) Jaffe (2) Mahalanobis 

ln(Labour)  

0.668*** 
(0.004) 

0.688*** 
(0.004) 

ln(Tangible capital)  

0.238*** 
(0.003) 

0.238*** 
(0.003) 

ln(R&D capital)  

0.040*** 
(0.002) 

0.040*** 
(0.002) 

ln(Spillover pool)  

0.021 
(0.014) 

0.040** 
(0.020) 

Note: The Jaffe proximity measure requires that firms operate in the same technological field for 
spillovers to occur; the Mahalanobis extension allows spillovers among closely related fields. All 
regressions include firm and year fixed effects along with a dummy variable for observations where the 
stock of R&D capital is zero (coefficients not shown). Industrial value added is also included (coefficient 
omitted). The equation is estimated on an unbalanced panel of R&D performers in the 2000-2012 
period. Standard errors, which are clustered by firm, are in parentheses. The number of observations 
(firm x year) is 283,190 and the number of firms is 31,205. *** 𝑝<0.01, ** 𝑝<0.05, * 𝑝<0.10 

 

Results are summarized in Table 5. When we use the Jaffe measure of technological proximity to define 

the spillover pool, the output elasticity is not significantly different from zero. Allowing spillovers 

between firms operating in closely-related fields (the Mahalanobis extension) rather than requiring 
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firms to be operating in identical fields (Jaffe methodology) results in a statistically significant spillover 

elasticity. The output elasticity of own-R&D is not affected by allowing greater scope for spillovers.  

1-3 Robustness checks 

Finding a positive spillover effect is robust to different sample periods. We estimated the equation for 

rolling 6-year sub-periods over the 2000-2012 period (i.e. 2000-2005, 2001-2006, ..., 2007-2012). The 

spillover effect remains positive across all sub-periods except for the sub-period 2000-2005 and 2007-

2012 in which the coefficient is negative but not statistically different from zero.47 

The estimates of own-R&D and external R&D output elasticities could be disproportionately affected by 

a small number of young firms or ‘startups’ for several reasons. First, since startups are likely to have a 

low ratio of sales to costs, the productivity of R&D performed by startups may be lower than for other 

firms. Second, to the extent that young firms are also small, their size may limit their capacity to absorb 

knowledge created by other firms. Third, there is evidence that some startups are more innovative than 

other firms. Kortum and Lerner (2000) find that startups funded by venture capitalists have a higher 

propensity to patent than other firms. Schnitzer and Watzinger (2014) compare the spillovers generated 

by venture capital funded startups with spillovers generated by other firms. They find substantially 

larger spillover effects from venture capital startups.  

Excluding firms that are less than five years old, accounting for roughly 19% of our sample, has some 

impact on the spillover and own-R&D coefficients. The spillover coefficient increases while, contrary to 

our conjecture above, the own R&D coefficient decreases.48 These observations imply that, compared to 

established firms, startups tend to benefit more from their own R&D stock but less from R&D performed 

by other firms in the economy. To show this explicitly, we estimate a production function in which we 

interact the aggregate spillover pool and own R&D stock with the indicator for startups.  

Table 6 summarizes the results. We find that the own R&D coefficient is about a sixth greater for 

startups than for established firms (row 1). This difference is statistically significant. The startups in our 

sample are mostly profitable firms since we dropped all observations with negative value added.49 A 

higher own-R&D output elasticity for startups may therefore be capturing very rapid sales growth from a 

small base when new products are introduced.  

In contrast, spillovers received by startups from all firms are slightly smaller than for established firms 

and the estimate is less precise (row 2). As a second test, we constructed a spillover pool based on firms 

net of startups and estimated the output elasticity with respect to this pool. The spillover effect of this 

pool on all firms in our sample is slightly larger than the impact of the aggregate spillover pool (0.044 vs. 

0.040). We also included a separate spillover pool based on startups in the production equation. The 

coefficient on the pool generated by startups and received by all firms is still positive and significant but 

very small (row 3). A possible explanation for this finding is that startups perform R&D in a narrower 

 
47 The output elasticity with respect to own R&D remained positive and statistically significant across all sub-
periods. 
48 We find similar results when we define startups as firms less than three years old.  
49 The share of firms with negative value added is larger for total startups than for established firms. As a result, 
dropping observations with negative value-added leaves disproportionately more profitable start-ups in our 
sample.  
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range of technological fields than established firms as they focus on bringing a limited range of products 

to market.  

 

A small number of industries are driving the results. Four two-digit industries—manufacturing,50 

wholesale trade, information and cultural industries, and professional, scientific, and technical services -

- account for 89.6% of the total R&D stock in our sample but 69.4% of the observations.51 The shares in 

total R&D stock of these industries range from 10% to 30%. The shares of the other industries are 

almost all below 1%.  

We estimate equation 3 by interacting own R&D and the spillover pool by the dummy for these key R&D 

performing industries.52 The spillover output elasticity of these industries is about 15% larger than the 

baseline elasticity of 0.040 (column1 in Table 7). For other industries, the spillover coefficient is positive 

but insignificant. Also, note that the output elasticity of own R&D is greater for the key industries than it 

is for other industries, implying that internal R&D experience is positively associated with the capacity to 

benefit from it. For both the own R&D and the spillover coefficient, the null hypothesis that the two 

groups exhibit the same magnitude is rejected (𝑝-value = 0.001 and 0.067 respectively). 

Further, when equation 3 is estimated including a separate spillover pool generated by each of the 

groups (column 2 in Table 7), we find that the spillover effect generated by these key R&D-performing 

industries is about 40% larger than the aggregate spillover effect in our baseline specification (0.056 vs. 

0.040). In contrast, the coefficient on the pool generated by other industries is positive but not 

statistically significant. These findings strongly support the conclusion that the aggregate spillover effect 

we estimate in Table 5 is driven by the key R&D-performing industries. This result could be a sign of 

 
50 Excluding food, beverages, textiles and leather manufacturing (NAICS 31). 
51 It may be surprising that wholesale trade is a large R&D-performing industry. Note, however, that two 
subsectors in NAICS 41-- NAICS 4145 (pharmaceuticals, toiletries, cosmetics and sundries) and NAICS 4173 
(computer and communications equipment and supplies) -- account for 71% of the R&D stock of wholesalers but 
14% of the total observations in the industry. We suspect that most of the R&D performed in these subsectors is 
intended to develop new products and processes in sectors other than wholesale trade. 
52 The coefficients for the factor inputs are very similar if we estimate a production function separately for the key 
industries and the others. 

Table 6: Output elasticities for R&D capital and spillover, startups vs. established firms, 
FE estimates, Mahalanobis distance measure 

  Startups Established firms 

(1) R&D capital 0.048*** (0.003) 0.041*** (0.002) 

(2) Spillovers to 0.038* (0.020) 0.041** (0.020) 

(3) Spillovers generated by 0.008** (0.017) 0.044*** (0.017) 

Note: Standard errors clustered by firm are in parentheses. The coefficients in row 1 and 2 are obtained 
from estimating a Cobb-Douglas production equation in which we interact own R&D and the aggregate 
spillover pool with the indicator for startups. The results are very similar if we estimate the production 
function separately for startups and established firms. The coefficients in row 3 are obtained from 
estimating a production function that includes separate spillover pools generated by established firms and 
startups. The number of startup observations is 53,296 and the number of established firm observations is 
229,894. *** 𝑝<0.01, ** 𝑝<0.05, * 𝑝<0.10 
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asymmetric spillovers arising from different absorptive capacities since firms in these industries tend to 

have not only a larger R&D stock but also a higher propensity to conduct R&D than firms in other 

industries.53 

Table 7: Production function regression results, Static specification with fixed effects, 
Key R&D performing industries, Mahalanobis distance measure 

 1 2 

ln(Labour) 
0.668***  
(0.004) 

0.668***  
(0.004) 

ln(Tangible capital) 
0.238***  
(0.003) 

0.238***  
(0.003) 

ln(R&D capital)  
- 

0.040***  
(0.002) 

ln(R&D capital) x key industries 
0.046***  
(0.003) - 

ln(R&D capital) x other industries 
0.030***  
(0.004) - 

ln(Spillover pool) x key industries 
0.046***  
(0.020) - 

ln(Spillover pool) x other industries 
0.029  

(0.021) - 

ln(Spillover pool generated by key industries) 
- 

0.056***  
(0.019) 

ln(Spillover pool generated by other industries) 
- 

0.007  
(0.015) 

Note: Key R&D performing industries are NAICS 32-33 (Manufacturing excluding food, beverages, textiles 
and leather manufacturing), 41 (Wholesale trade), 51(Information and cultural industries), and 54 
(Professional, scientific, and technical services). The number of key industries observations is 196,405. The 
number of the total observations is 283,190. For details of the specification, refer to the footnote in Table 5. 
*** 𝑝<0.01, ** 𝑝<0.05, * 𝑝<0.10  

2. Dynamic specification 
With fixed T, our estimator based on OLS with firm fixed effects will be biased and inconsistent if the 

strict exogeneity assumptions for the factor inputs are violated. Hence, we adopt more advanced 

techniques that do not require the assumption of strict endogeneity to isolate useful information in our 

data. Specifically, we allow some of the factor inputs to be endogenous with respect to unobserved 

productivity shocks. Then, we use past values of the factor inputs as instruments to identify the 

parameters of interest after removing fixed effects through appropriate transformations. 

2-1. Model  

The GMM estimator introduced in Arellano and Bond (1991) - henceforth, AB GMM - has its origin in the 

study of dynamic equilibrium relationships. The estimator is relevant if productivity shocks are 

persistent (i.e. serially correlated) and factors of production respond to these shocks.54 We can model 

such dynamics by assuming a first order autoregressive process for 𝜇𝑖𝑡: 

 
53 In these key R&D performing industries, the average share of observations with positive R&D investment is 
76.2% compared to 61.4% for other industries. The average R&D intensity among the key industries is almost 
double that of the other industries (0.626 vs. 0.328). In addition, the top 5% of R&D performers in these industries 
perform more R&D both in absolute terms and relative to value added than their counterparts in other industries.  
54Later, we show that this is indeed the case in our data. 
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(11)  𝑦𝑖𝑡 = 𝛼𝑐𝑖𝑡 +  𝛽𝑙𝑖𝑡 +  𝛾𝑘𝑖𝑡 +  𝜑𝑠𝑖𝑡 + 𝜂𝑖 + 𝜔𝑡 + 𝜇𝑖𝑡 + 𝑚𝑖𝑡 

 

(12) 𝜇𝑖𝑡 =  𝜌𝜇𝑖𝑡−1 + 𝜈𝑖𝑡|𝜌| < 1; 𝜈𝑖𝑡 ,𝑚𝑖𝑡  ~ 𝑀𝐴(0) 

 

where 𝑚𝑖𝑡 represent measurement errors (assumed to be serially uncorrelated).  

Equations 11 and 12 lead to the dynamic autoregressive distributed lag regression model that includes 

lagged values of the dependent and independent variables as regressors: 

(13)  𝑦𝑖𝑡 = 𝛼𝑐𝑖𝑡 − 𝜌𝛼𝑐𝑖𝑡−1 +  𝛽𝑙𝑖𝑡 − 𝜌𝛽𝑙𝑖𝑡−1 +  𝛾𝑘𝑖𝑡 − 𝜌𝛾𝑘𝑖𝑡−1 +  𝜑𝑠𝑖𝑡 −  𝜌𝜑𝑠𝑖𝑡−1 

+𝜌𝑦𝑖𝑡−1 + 𝜔𝑡 − 𝜌𝜔𝑡 + 𝜂𝑖(1 − 𝜌) + 𝜈𝑖𝑡 + 𝑚𝑖𝑡 − 𝜌𝑚𝑖𝑡−1 

or  

(13')  𝑦𝑖𝑡 = 𝜋1𝑦𝑖𝑡−1 + 𝜋2𝑐𝑖𝑡 − 𝜋3𝑐𝑖𝑡−1 + 𝜋4𝑙𝑖𝑡 + 𝜋5𝑙𝑖𝑡−1 

   + 𝜋6𝑘𝑖𝑡 + 𝜋7𝑘𝑖𝑡−1 + 𝜋8𝑠𝑖𝑡 + 𝜋9𝑠𝑖𝑡−1 + 𝜔𝑡
∗ + 𝜂𝑖

∗ + 𝑒𝑖𝑡 

(14)  𝑒𝑖𝑡 =  𝜈𝑖𝑡 + 𝑚𝑖𝑡 − 𝜌𝑚𝑖𝑡−1 

where 𝜔𝑡
∗ = (𝜔𝑡 − 𝜌𝜔𝑡−1) and 𝜂𝑖

∗ = (1 − 𝜌)𝜂𝑖 .  

If there are no measurement errors 𝑒𝑖𝑡~𝑀𝐴(0) and 𝑒𝑖𝑡~𝑀𝐴(1) otherwise.55 

In equation 13,the coefficients on lagged inputs are expected to be nonlinear combinations of the 

coefficients on the lagged dependent variable (𝜌) and the respective contemporaneous input 

(𝛼, 𝛽, 𝛾, 𝜑).These “common factor” restrictions are𝜋3 = −𝜋1𝜋2;𝜋5 = −𝜋1𝜋4; 𝜋7 = −𝜋1𝜋6; and 𝜋9 =

−𝜋1𝜋8. We can test Equation 13 for the implied nonlinear restrictions; if they are not rejected, the 

associated coefficients can be computed by the minimum distance procedure. If common factor 

restrictions are rejected, the long-run solution of the model can be computed as nonlinear combinations 

of the estimated coefficients as follows:56 

 (15)  𝑦 =  
𝜂𝑖

∗

1−𝜋1̂
 +(

𝜋2̂+𝜋3̂

1−𝜋1̂
)𝑐 + +(

𝜋4̂+𝜋5̂

1−𝜋1̂
) 𝑙 + ( 

𝜋6̂+𝜋7̂

1−𝜋1̂
)𝑘 + ( 

𝜋8̂+𝜋9̂

1−𝜋1̂
)𝑠 +

𝑤∗̂

1−𝜋1̂
 

 

2-2. Empirical implementation 

We estimate both the unrestricted and restricted models as shown in Equations 6 and 6'. The 

coefficients implied by the common factor restrictions are obtained by first estimating (unrestricted) 

equation 6 and then computing the restricted coefficients by a Chamberlain-type minimum distance 

procedure (Chamberlain, 1984; Wooldridge, 2002). We adopt the two-step procedure using the optimal 

weight matrix and correcting for potential small sample bias (downward) following the approach 

suggested in Windmeijer (2005). In theory, the procedure is asymptotically more efficient than the one-

step procedure. 

 
55To derive Equation 10, rewrite Equation 8 lagged one-period for 𝜇𝑖𝑡−1, and substitute into Equation 9. Next, 
Equation 9 is substituted for 𝜇𝑖𝑡 in Equation 8. 
56We use the Delta method to compute the standard errors of the calculated coefficients. 
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In this paper, we transform our equation by forward orthogonal deviation (FOD) instead of first 

differencing (FD) to eliminate fixed effects without introducing all realizations of disturbances in the 

equation.57 Since our data set is unbalanced, first differencing would introduce many gaps, causing many 

observations to be lost. In contrast to the FD transformation which subtracts the previous value from 

the current value, the FOD transformation subtracts the average of all available future observations 

from the current value. Therefore, the FOD transformation minimizes the loss of observations. 

The lagged dependent variable is endogenous by construction. In all specifications, we assume that 

labour, tangible capital, own R&D, and the dummy indicating zero R&D are endogenous while the 

spillover pool is exogenous. Our assumptions imply that we can use lagged 𝑡-2 and earlier values in levels 

and lagged 𝑡-1 first differences as valid instruments. In order to increase the precision of the estimator, 

we include the whole set of suitably lagged values implied by the adopted lag-structure.58 Note that the 

presence of measurement errors in the factor inputs and value added may lead to violation of the 

exogeneity assumptions for the instruments requiring us to adopt alternative lag structures for the 

instruments.59 We formally test for serial correlation in the errors using the Arellano and Bond (1991) 

test (henceforth, AB test). 

2-3. Results 

In theory, the FE estimator suffers from dynamic panel bias (i.e. Nickell bias) since the transformed 
lagged dependent variable is correlated with the transformed error term. Specifically, the transformed 
regressor is negatively correlated with the transformed error term because the within-transformation 
introduces past and future realizations of the errors with a negative sign (see Nickell, 1981 for details). 
This is the opposite of OLS where regressors and errors are positively correlated.60 Therefore, we expect 
an unbiased estimate to be within the bounds set by OLS (upper bound) and FE estimates (lower 
bound).  

 
57 We also tried FD transformation for all the following estimations. In general, the estimates based on FD 

transformation tend have larger standard errors relative to the ones based on FOD transformation. Moreover, the 

coefficients for factor inputs tend to be closer to the coefficients that are known to be biased (i.e. OLS and FE). This 

appears to be consistent with Hayakawa (2009) in which the author shows (by simulation studies) that the GMM 

estimator of the model transformed by the FOD transformation tends to perform better than that transformed by 

FD. 
58 However, since moment conditions rise quadratically in number with T employing all suitably lagged values as 
instruments may cause 'overfitting-bias'. A tell-tale sign of 'overfitting' is a high 𝑝-value (close to unity) for the test 
of joint validity of the instruments (Bowsher, 2002).  Since we do not have a particularly large T and we do not find 
any sign of overfitting-bias, we always employ all possible moment conditions implied by the adopted lag structure 
for the instruments. We tried reducing the set of moment conditions by restricting instruments to more recent lags 
(e.g. using 𝑡-2 to 𝑡-6). However, we find that improvement in the overall validity of moment conditions is marginal. 
Moreover, the estimated coefficients do not change to any meaningful extent. We also tried 'collapsing' the matrix 
of instruments (see Roodmand, 2009). However, collapsing leads not only to much larger standard errors but also 
to coefficients that are outside a reasonable range. 
59 The estimation strategy allows for higher-order (but finite) autoregressive models given that we have a 
minimum number of time series of observations available for identification. If there are (serially uncorrelated) 

measurement errors, then  𝑒𝑖𝑡~𝑀𝐴(1) in Equation (10'). In this case, we need to use lagged 𝑡-3 and earlier values 
in levels for the transformed equation and lagged 𝑡-2 in first differences for the levels equation. 
60 For instance, consider a negative productivity shock in year 𝑡-1 for firm 𝑖. The fixed effect for firm 𝑖 for the 
sample period would appear to be lower due to the deviation from the sample average by the extent of the 
unexplained productivity shock. Hence, in year 𝑡, lagged output and the fixed effect (embedded in the error term) 
would both be lower (positive correlation). 
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Columns 1 and 2 in Table 8 summarize some key results based on OLS and FE. We reject the common 

factor restrictions in both specifications (𝑝-value: 0.000) so the long-run coefficients are reported for the 

factor inputs. First, note that the OLS coefficients on labour and own-R&D are quite large, compared to 

our FE estimates from the static model. Adding firm fixed effects to the dynamic model changes the 

magnitude of the estimates substantially except for the long-run spillover coefficient. The coefficients 

for the lagged value added, labour, and own R&D experience downward shifts (relative to the OLS 

estimates), presumably induced by the 'Nickell-bias' as a result of within-transformation.61 This is 

consistent with our theoretical predictions. We use the OLS and FE results as rough upper and lower 

bounds respectively to assess the relevant estimates we obtain from the subsequent estimation 

strategies used to mitigate the endogeneity bias. 

Columns 3 – 5 report the estimates based on AB GMM and system GMM across different lag structures 

adopted for the instruments.62 For all specifications, we report the long-run coefficients for the factor 

inputs calculated using equation 15 since we reject the common factor restrictions (𝑝-value: 0.000). The 

qualitative results based on the coefficients implied by the common factor restriction are the same.  

We started with using the lagged t-2 and earlier levels as instruments for the transformed equation but 
the lagged dependent variable is quite close to that based on FE and the long-run coefficients for the 
input variables are outside the bounds set by OLS and FE. Also, we reject the null of the validity of this 
lag structure in the Hansen test of overidentifying restrictions and find evidence of serially correlated 
errors as indicated by the AB test. Hence, we adopt the lagged 𝑡-3 and earlier levels as the instruments 
for the transformed equation in column 3 but there remain diagnostic issues. However, the coefficient 
for the lagged dependent variable is higher than that based on using the instruments lagged t-2 and 
earlier, indicating that we are mitigating the bias to some extent. The coefficients for labour and own 
R&D are still outside the bounds. The coefficient for tangible capital appears to be too large given our 
prior knowledge. Also, we reject the constant returns to scale. Employing alternative lag structures (e.g. 
using lagged 𝑡-4 and earlier values) does not improve the validity of our specification. 
 

 

 

 

 

Table 8: Production function, Dynamic specifications, Mahalanobis distance measure 

 Dependent: ln(value added)𝑡 (1) OLS (2) FE (3) AB GMM 
(4) System 

GMM 
(5) System 

GMM 

Lag order of inst. for diff. eqn. - - t-3 and earlier t-2 and earlier t-4 and earlier 

 
61 For the FE results (column 2), we do not report the test results for AB tests since AB test is not appropriate for 
fixed effect regressions in a dynamic panel data context. The AB tests assume the right-hand-side variables are not 
correlated with future errors (see Arellano-Bond, 1991). Such assumption is not valid with the mean-deviations 
transformation. 
62We also experimented with a simpler approach following Anderson and Hsiao (1972) and its extended version 
based on Holtz-Eakin, Newey, and Rosen (1988) using 'GMM-style' instruments. However, the coefficients tended 
to be smaller than the FE estimate and their standard errors were larger than that based on OLS and FE. 
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Lag order of inst. for levels eqn. - - - t-1   t-3 

ln(Value added)𝑡−1 
0.744*** 
(0.001) 

0.382*** 
(0.002) 

0.501*** 
(0.017) 

0.578*** 
(0.006) 

0.846*** 
(0.014) 

ln(Labour)𝑡 
0.611*** 
(0.003) 

0.571*** 
(0.003) 

0.514*** 
(0.059) 

0.815*** 
(0.026) 

0.946*** 
(0.063) 

ln(Labour)𝑡−1 
-0.411*** 

(0.003) 
-0.209*** 

(0.003) 
-0.251*** 

(0.047) 
-0.532*** 

(0.019) 
-0.862*** 

(0.055) 

ln(Tangible capital)𝑡 
0.255*** 
(0.001) 

0.272*** 
(0.001) 

0.474*** 
(0.009) 

0.399*** 
(0.009) 

0.421*** 
(0.012) 

ln(Tangible capital)𝑡−1 
-0.221*** 

(0.001) 
-0.128*** 

(0.002) 
-0.231*** 

(0.010) 
-0.289*** 

(0.007) 
-0.376*** 

(0.012) 

ln(R&D capital)𝑡 
0.104*** 
(0.002) 

0.068*** 
(0.003) 

-0.178*** 
(0.027) 

0.032*** 
(0.010) 

-0.022  
(0.028) 

ln(R&D capital)𝑡−1 
-0.050*** 

(0.002) 
-0.042*** 

(0.002) 
0.120*** 
(0.022) 

0.002  
(0.008) 

0.049*  
(0.026) 

lnln (Spillover pool)𝑡 
0.118*** 
(0.035) 

-0.128** 
(0.051) 

-0.266*** 
(0.064) 

0.419*** 
(0.063) 

-0.033  
(0.050) 

ln(Spillover pool)𝑡−1 
-0.109*** 

(0.035) 
0.163*** 
(0.051) 

0.282*** 
(0.063) 

-0.392*** 
(0.062) 

0.041  
(0.050) 

 No. Observations (firm x year) 243,040 243,040 213,757 243,040 243,040 

No. Instruments  N/A N/A 290 401 286 

Hansen Overid. Test  - - 0.000 0.000 0.000 

Diff. Hansen for level eqn. - - - 0.000 0.000 

A-B AR(1) test 0.000 - 0.000 0.000 0.000 

A-B AR(2) test   0.000 - 0.000 0.000 0.375 

  Long-run (equilibrium) coefficients 

ln(Labour) 
0.782*** 
(0.004) 

0.586*** 
(0.004) 

0.526*** 
(0.039) 

0.670*** 
(0.018) 

0.548*** 
(0.074) 

ln(Tangible capital) 
0.133*** 
(0.002) 

0.234*** 
(0.002) 

0.488*** 
(0.014) 

0.260*** 
(0.009) 

0.294*** 
(0.036) 

ln(R&D capital) 
0.211*** 
(0.003) 

0.043*** 
(0.003) 

-0.116*** 
(0.016) 

0.082*** 
(0.009) 

0.177*** 
(0.032) 

ln(Spillover pool) 
0.036*** 
(0.003) 

0.056** 
(0.019) 

0.032  
(0.033) 

0.064*** 
(0.005) 

0.052*** 
(0.011) 

sum of β's 1.126 0.863 0.897 1.012 1.019 

CRS test  0.000 0.000 0.021 0.350 0.638 

Note: Standard errors are in parentheses. For column 3 – 5, standard errors are computed based on the two-step 
procedure correcting for potential small sample bias following Windmeijer (2005). Lagged value added is 
endogenous by construction. We assume that labour, capital, own R&D, and the dummy for zero R&D are 
endogenous - their suitably lagged values (in levels for the FOD equation and in first differences for the levels 
equations) are included as GMM-style instruments. The spillover pool is assumed to be exogenous and therefore, 
included as IV-style instruments. All the test results are reported with 𝑝-values. *** 𝑝<0.01, ** 𝑝<0.05, * 𝑝<0.10 

 

As discussed in section 2-1, the instruments used in column 3 are likely to be weak due to the 

persistence in the factor inputs and real value added.63 Indeed, most of the estimates for the factor 

 
63 Real value added and all (potentially endogenous) factor inputs are quite persistent in our data. We estimated a 
simple AR(1) specification on real value added and on each of the factor inputs. Based on our preferred 
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inputs based on AB GMM are closer to the Nickell-biased FE estimates than to the upwardly biased OLS 

estimates, suggesting that the weak instrument biases are potentially important in our case.64 

Therefore, in Columns 4 and 5, we report the estimates from employing additional moment conditions 

for the equation in levels (i.e. system GMM).  

In column 4, we adopt lagged levels dated 𝑡-2 and earlier as instruments for the transformed equation, 

combined with lagged first differences dated 𝑡-1 as instruments for the levels equation. The coefficients 

for lagged value added, labour, and own R&D are within the bounds set by OLS and FE. These 

coefficients are larger than their AB GMM counterparts, which are in turn closer to the Nickell-bias-

tainted estimate. This relationship among the coefficients indicates that employing additional moment 

conditions for the equation in levels does mitigate finite sample bias to some extent. Moreover, 

adopting the additional moment conditions appear to improve efficiency as indicated by the smaller the 

standard errors for the coefficients compared to those based on the AB GMM in column 3. We also find 

statistical evidence of constant returns to scale (𝑝-value: 0.350).  

However, the AB test suggests there is second-order serial correlation in the first-differenced residuals. 

With the lag structure adopted in column 5, the AB test indicates that we do not have second-order 

correlation (i.e. no MA(1) structure in the error terms in levels). Although we still reject the overall 

validity of our moment conditions, the own R&D and the spillover coefficients remain positive and 

statistically significant.  

One puzzle is that, despite no evidence of an MA(1) structure in the error terms (in levels), we still reject 

the validity of using lagged levels dated 𝑡-4 and earlier and lagged first differences dated 𝑡-3 as 

instruments. This may indicate that both measurement errors (𝑚𝑖𝑡) and productivity shocks (𝜈𝑖𝑡) are 

serially correlated but in the opposite direction offsetting the appearances of serial correlation 

stemming from 𝑚𝑖𝑡 and 𝜈𝑖𝑡in the error term (𝑒𝑖𝑡).65 Further adjusting the lag structure of the 

instruments (e.g. 𝑡-5 and earlier levels for the transformed equation and 𝑡-4 first differences for the 

equation in levels) leads to slight improvement in the validity of the moment conditions but the 

coefficients tend to be outside the bounds and the standard errors increase.  

Although we find some signs that adopting additional moment conditions for the levels equation 

appears to mitigate finite sample bias and improve efficiency, we do not necessarily prefer the system-

GMM estimates to our FE estimates based on the static model. The rejection of the overall validity of 

the moment restrictions we impose and its discrepancy with the AB test on the residuals suggest that it 

is quite challenging to find an ideal specification in our data. However, our estimates broadly support 

our previous findings that there are positive and statistically significant 'pure technological' spillovers 

among Canadian firms.66 

 
specification with system-GMM, the coefficients on the lagged dependent variables in all AR(1) specifications are 
close to unity (ranging from 0.859 to 0.959). OLS tends to result in larger coefficients but we believe that these are 
likely to be biased upward. 
64 Weak instruments are likely to bias the AB estimates in the direction of FE estimates. See Blundell and Bond 
(2002) for more detail. 
65A similar situation is observed in Blundell and Bond (2002). 
66 We also estimated the dynamic model for 6-year rolling sub-periods from 2000 to 2012. The system-GMM 
estimates for the spillover pool remained positive and statistically significant throughout all sub-periods except for 
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VI. Analysis by size of firm 
In Section IV, we reported positive and statistically significant output elasticities for own-R&D and the 

spillover pool. In this section, we investigate whether these elasticities vary by size of firm by estimating 

variants of equation 2, using a static specification. We first split the sample into large and small firms; 

however, the coefficients on labour and tangible capital were not statistically different for large and 

small firms, so the analysis proceeded using equations for all firms. The analysis of the spillover pool 

considers both the generation and receipt of knowledge. To accomplish this goal, we calculate separate 

spillover pools generated by small and large firms and include interaction effects in the regressions to 

identify spillover effects between firms of different sizes.  

The LEAP database has a potential weakness when assessing R&D impacts by size of firm. As discussed 

earlier, when two firms merge or when one firm is acquired by another, adjustments are made to create 

the new entity in the historical data.67 Of particular interest here are the changes arising from mergers 

of two small firms to create a larger entity and the takeover of a smaller firm by a large firm. These 

changes reduce the number of small firm observations and artificially reduce the small firm spillover 

pool while increasing the large firm pool. Further, if the return to R&D differs by size of firm, the 

synthetic mergers could affect the estimated R&D output elasticity of larger firms.  

Fortunately, the number of firms affected by these adjustments is small. Baldwin, Leung, and Landry 

(2016) report that the aggregate business entry rate for 2011 falls from 13.2% to 13% after adjustments 

for mergers, acquisitions, divestitures and other legal restructurings that occurred in 2012. While this 

result is not specific to changes in the number of small firms, it does suggest that the treatment of 

mergers and acquisitions in LEAP is unlikely to be having a substantial impact on our parameter 

estimates. 

As noted earlier, we define small firms as the firms receiving the enhanced SRED tax credits and large 

firms as those receiving the regular credit. Firms are required to report the amount of R&D spending 

that is eligible for the enhanced credit, which is known as the “expenditure limit”. Unfortunately, the 

treatment of mergers and acquisitions in T2-LEAP prevents us from using the reported expenditure limit 

to identify recipients of the enhanced credit. When a firm eligible for the enhanced credit is taken over 

by a large firm that is not, then the synthetically merged entity retains a positive expenditure limit, 

erroneously indicating that it is eligible for the enhanced credit. 

In order to identify enhanced credit recipients, we apply a simplified version of the eligibility criteria for 

taxable income and assets discussed in footnote 41 to the firms in our sample.68 This simple solution 

appears to be quite satisfactory as the annual number of enhanced and regular credit recipients are 

consistent with the numbers reported in Jenkins et al. (2011). 

The rest of this section reviews of output elasticities and then discusses rates of return on the spillover 

pool and the stock of own-R&D. 

 
2005-2010 and 2006-2011 (negative but insignificant). The output elasticity with respect to own R&D is positive 
and statistically significant in all 6-year periods. 
67 Note that if a firm merges with or is acquired by a foreign firm and leaves Canada, an exit is recorded in the data. 
68The eligibility criteria for taxable income and assets vary over time. 
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1. Output elasticities 
Results are reported in Table 9 for own-R&D and spillover pool output elasticities. The first column 

shows the own-R&D output elasticity; the entry in the first row is the base model result for all firms that 

was reported in Table 5. The next two rows in column one show the own-R&D output elasticity by size of 

firm. A key result is that the output elasticity for large firms is almost a third larger than for small firms. 

The difference is statistically significant and robust to several changes to the sample. 

The elasticities do not change substantially when rolling six-year regressions are performed over the 
2000-12 period or when the 13-year estimation period is successively shortened to five years ending in 
2012. The estimates are also robust to changes in the data trimming criteria employed. We performed 
regressions with the full sample and with additional trimming by employment, tangible capital, R&D 
capital and value added without observing any substantial changes in the own-R&D output elasticities.69 
Similarly, the large difference in the productivity of R&D is robust to the exclusion of startups, which are 
characterized by lower productivity than established firms. Excluding firms less than three or five years 
old has only a minor impact on the R&D output elasticity of large firms and virtually no impact on the 
small firm elasticity. We also examined whether this is driven by our definition of small firms. Adopting a 
more conventional definition that small firms have less than 100 or 500 employees,70 we find an even 
larger gap in the output elasticity of own R&D capital between small and large firms. We also estimated 
a dynamic production function allowing the own R&D coefficient to differ by firm size. Our preferred 
system-GMM estimates indicate that the output elasticity of own R&D is larger for large firms than for 
small firms and the difference between the two is statistically significant (𝑝-value = 0.000).71 Finally, we 
obtain a similar result for the key R&D performing industries that were discussed in section V. 
 
Output elasticities for Mahalanobis spillovers are shown in columns 2-4 in Table 9. The entry in row one, 

column two (spillovers sent by all firms and received by all firms) is the base model result reported in 

Table 5. Rows two and three of the second column indicate how spillovers generated by small and large 

firms benefit all firms. The point estimates of the coefficients indicate that spillovers generated rise with 

firm size,72 and we reject the hypothesis that the two coefficients have the same value (𝑝-value: 0.000).  

The finding that spillovers rise with firm size is robust to changes in the trimming criteria for our sample.  

We carried out our regression analysis using the full sample and samples with additional trimming by 

value added, employment, tangible capital stock, R&D capital, and value added to R&D capital ratio as 

described in the data cleaning section, respectively. In all samples, we continued to find smaller 

spillovers from small firms. Excluding firms that are less than three or five years old (i.e. start-ups) did 

not change our qualitative result that spillovers from small firms are smaller than those from large firms. 

Further, based on conventional definitions of small firms, spillovers generated by small firms are not 

statistically significant while those generated by large firms continue to be positive and significant. 

Finally, we estimated the dynamic equation using system-GMM with separate spillover pools for small 

 
69 We also repeated the tests described in the “data cleaning” section using an equation with own-R&D 
disaggregated by firm size. Recall that data trimming also affects the ratio of value added to R&D capital, which is 
used to transform elasticities to rates of return. 
70 In terms of the average labour unit (ALU), these definitions translate into ALU<81 and ALU<517 based on firm 
size distributions in T2-LEAP and in the overall business register. 
71 Using our preferred system-GMM estimates, we compute the long-run coefficients for employment, tangible 
capital, small firm R&D capital, large firm R&D capital, and the spillover pool as: 0.698 (0.017); 0.224 (0.009); 0.081 
(0.009); 0.126 (0.010); 0.057 (0.005) respectively – all significant at 1% (standard errors are in parentheses).  
72 Note that the aggregate spillover pool is the sum of the pool generated by small and large firms.  
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and large firms, confirming the finding that spillovers rise with firm size. We reject the null hypothesis 

that the two coefficients are the same in magnitude with a 𝑝-value of 0.080.73 

Table 9: Estimated output elasticities by size of firm, Static specifications, Fixed 
Effects 

  Own-R&D 
Mahalanobis Spillovers Received by 

All firms Small firms Large firms 

All firms 
0.040*** 

(0.002) 
0.040** 
(0.020) 

0.039**  
(0.020)  

0.032  
(0.023) 

Small firms 
0.038*** 

(0.002) 
0.023***  
(0.008) 

0.021***  
(0.008) 

0.048*** 
(0.017) 

Large firms 
0.050*** 

(0.003) 
0.062***  
(0.008) 

0.061***  
(0.008) 

0.025 
(0.019) 

Note: Standard errors clustered by firm are in parentheses. See footnotes to Table 5 for a 
description of the base model and the indicators of statistical significance. The entries in row 1, 
columns 1 and 2 are from Table 5. The coefficients in column (3) and (4) are obtained from 
estimating the baseline specification as in Table 5 but with own R&D and the aggregate and 
size-specific spillover pool interacted with a variable indicating small and large firms, 
respectively. *** 𝑝<0.01, ** 𝑝<0.05, * 𝑝<0.10 

 

The results summarized in Table 9 also indicate that spillovers are greater between than within firm size 

groups. That is, knowledge transfers from small (large) firms to large (small) firms are greater than 

transfers among small (large) firms. These differences are statistically significant. Further, we find no 

statistical evidence for spillovers among large firms. The coefficient is positive but not statistically 

different from zero. It appears that the insignificance of the spillovers received by large firms (row 1, 

column 4) is mainly driven by the statistically insignificant spillovers among large firms.  

2. Rates of Return 
The private rate of return is defined as the marginal increase in the output of firm 𝑖 induced by a 

marginal increase in firm 𝑖's R&D stock. The external rate of return is the marginal increase in the output 

of all the other firms induced by a marginal increase in firm 𝑖's R&D stock. The social rate of return is the 

sum of the private and external rates of return. 

We make several simplifying assumptions to allow us to calculate the rate of return as the product of 

the estimated output elasticities and the ratio of value added to R&D capital stock. In particular, we 

abstract from what Bloom, Schankerman, and Van Reenen (2013) describe as the amplification effects 

of R&D. That is, we do not take into account the effect of an increase in the R&D stock of firm 𝑖 on the 

return to the R&D of other firms and hence their decision to perform R&D or own returns in the 

subsequent periods.74 We also assume that all firms are fully symmetric in output, R&D, and 

technological linkages. In other words, we assume all firms have the same size of output and R&D stock 

and the same technological linkages (i.e. 𝑝𝑖𝑗 = 𝑝𝑖𝑘 = 𝑝 ∀ 𝑖, 𝑗, 𝑘).  

 
73 Based on our preferred system-GMM estimates, we calculate that the long-run coefficients for employment, 
tangible capital, R&D capital, the small firm spillover pool , and the large firm spillover pool are: 0.661 (0.018); 
0.271 (0.009); 0.079 (0.009); 0.050 (0.017); 0.080 (0.014) respectively – all significant at 1% (standard errors are in 
parentheses).  
74 Also, we do not capture in our analysis the transfer of rents among firms operating in the same or similar 
product markets.  
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With these assumptions, we can write the private rate of return as 𝛾
𝑌

𝐾
 and the external rate of return as 

𝜑
𝑌

𝐾
. Hence, the social rate of return can be written as 

𝑌

𝐾
(𝛾 + 𝜑). The size-specific private and external 

rates of return can be obtained by multiplying the size-specific own R&D and spillover coefficients by the 

𝑌 to 𝐾 ratio.75 In Appendix 3, we provide the detailed derivation of the private and external rates of 

return (both aggregate and by size) based on our estimating equation. 

The own-R&D output elasticity implies a gross of depreciation private rate of return on all R&D of about 

33% (Chart 1). This rate of return is substantially higher than the median value of estimates obtained 

from our literature survey.  

 

 
75 For the private rate of return, we multiply the size-specific own R&D coefficient by the size-specific 𝑌 to 𝐾 ratio. 
For the external rate of return, we multiply the size-specific spillover coefficient by the aggregate 𝑌 to 𝐾 ratio. See 
Appendix 3. 
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The private rate of return on R&D is much higher for large than for small firms, about 53% compared to 

17% (Chart 2). A key contributing factor to this gap is more generous R&D subsidies for small than for 

large firms, which has different impacts on the required net of subsidy rate of return on R&D by firm 

size. In Canada, the combined federal-provincial tax-based effective subsidy rate for small firms 

averaged about 23 percentage points more than its large firm counterpart over the 2010-2012 period 

(Table 10). A more generous subsidy rate could therefore account for about two-thirds of the 35-

percentage point gap in private rates of return. When expressed gross of subsidies and net of 

depreciation, the private rate of return on R&D capital is approximately 60% for large firms and 48% for 

small firms. 

As discussed in the preceding section, the low profitability of startups could in principle be affecting the 

relative rate of return on R&D, but our analysis does not support this proposition. Another possibility is 

that barriers to entry erected by larger firms put downward pressure on the productivity of the R&D 

capital of small firms. Finally, R&D capital may benefit from economies of scale or scope in the same way 

as tangible capital, causing R&D productivity to rise with firm size.76 

 
76 When tangible capital is disaggregated by firm size in our production function, we obtain a higher rate of return 
on tangible capital used by large firms than on tangible capital used by small firms.  
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The implied external rate of return on all R&D is also approximately 33%, which is just over the  60th 

percentile of the results from our literature survey (Chart 2).77 The external rate of return on R&D 

performed by small firms is about 19%, while the rate calculated for large firms is approximately 52% 

As discussed in Section II.4, theoretical considerations do not provide firm guidance on whether and in 

what direction spillovers should be expected to vary by size of firm. The two other analyses of spillovers 

by firm size obtain conflicting results. Bloom, Schankerman, and Van Reenen (2013), report that small 

firms operate in “technological niches” that limit the applicability of their research to other firms, 

causing a statistically-significant rise in spillovers with firm size. Ornaghi (2006), working with Spanish 

data, concluded that small firms generated more substantial spillovers than large firms.  

Our analysis also provides some evidence on factors affecting spillovers by size of firm. First, our dataset 

does not support the finding by Bloom, Schankerman, and Van Reenen (2013) that small firms 

undertake R&D in a narrower range of technological fields: the technological proximity indexes we 

calculated do not vary substantially by size of firm.78 Second, there is some empirical support for the 

proposition that small firms perform less basic research and more experimental development than 

larger firms.79 Third, net of depreciation and subsidies the private rate of return on R&D performed by 

small firms is just over 2% compared to almost 38% for large firms. While a low net private return does 

not necessarily result in a low external return, projects with low commercial value to the performing 

firm may not provide useful knowledge to other firms either. 

VII. Conclusion 
This paper makes three contributions to the extensive literature on R&D spillovers. First, it provides 

estimates of the rate of return to external R&D using recent firm-level data for Canada. The only other 

estimates available were prepared 31 years ago by Bernstein (1988) and only covered selected 

manufacturing industries. Second, this paper makes use of data on R&D spending by technological field 

to calculate technological proximity measures. This approach has a considerable advantage over the 

more usual approach of defining proximity in terms of patenting activities since it allows all R&D 

 
77 The median rates of return on internal and external R&D are calculated using estimates from the studies 
included in the Hall, Mairesse, and Mohnen (2010) survey as well as the estimates shown in Table 2.  
78 Recall from Table 4 that the mean spillover pool (both aggregate and by size) is greater for small firms than for 
larger firms. 
79We can only calculate the share of firms performing basic research by size of firm with the current data set. 

Federal Provincial2 Combined3

Small firms 37.0 14.0 45.8

Large firms 18.0 5.7 22.7

Small less large 19.0 8.3 23.2

1. See Lester (2012) for additional information on effective credit rates 

2. Expenditure-weighted sum of provincial statutory rates.

Table 10: Federal and Provincial 

SR&ED Effective1 Investment Tax Credit Rates 

(2010-12 in percentage) 

3. The base for the federal credit is reduced by the amount of provincial assistance provided.
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performers to be included in the analysis. Third, we calculate separate spillover pools by size of firm, 

which allows us to assess whether spillovers vary with the size of the firm performing the R&D. 

Our preferred measure of the spillover pool indicates that the rate of return on external R&D is about 33 

per cent, which is higher than typically found in the literature. We find evidence that spillovers rise with 

the size of the firm performing the R&D. This result substantially weakens the case for subsidizing R&D 

performed by small firms at a higher rate than R&D performed by larger firms, as is done in Canada and 

several other OECD member nations. We also find much lower private rate of return on R&D performed 

by small firms than by large firms. Subsidies appear to be playing a key role in this result.  

Our preferred coefficients are obtained by estimating a static production function with fixed effects. Our 

analysis with system generalized method of moments estimators based on a dynamic model provides 

broad support for the results from the static model. 
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Appendix 1: Sample Selection Process 
Our sample selection is determined by the availability of information for each firm’s technology position. 

This information is reported in schedules 60 and 32 in the CRA (Canada Revenue Agency) form T661 - 

Scientific Research and Experimental Development (SR&ED) Expenditures Claim.80In the form, firms are 

required to report spending on each R&D project along with a technology field code for the project. CRA 

provides firms with a set of codes assigned to 28 technology fields (3-digit code) which are further 

disaggregated into 147 detailed fields (5-digit code).  

We classify firms into three different groups depending on the availability of information on their 

technology position. First, there are firms that provide full information for technology field and spending 

for all R&D projects undertaken for all years over the period 2008-2012 (90.1% of total observations). 

Second, there are firms that provide information for all R&D projects undertaken in some but not all 

years (roughly 9.0% of total observations). In this case, we use information in the years in which they 

provided full information for technology fields and spending to identify their technology 

position.81These two groups of firms are included in our sample (99.1% of total observations). Third, 

there are firms that do not provide full information for any of the years over 2008-2012. They provide 

full information for either a fraction or none of the projects over the sample period. In order to reduce 

the impact of this partial reporting, we identify firms that provide full information for at least half of 

their R&D projects in a given year and treat them as if they provided enough information.82 Firms that 

provide less technological field information are not included in our sample.83 

Based on spending and field information for each project conducted by a given firm over the sample 

period, we identify the firm’s position in technology space consisting of 147 (at 5-digit code) fields.  

These firms are merged with our main data set (T2-LEAP) using the longitudinal enterprise identifier so 

that we have value added, average labour unit, capital stock and R&D stock variables for them. We also 

transfer technology position information for each firm being merged with the main data set so that we 

can weight the external pool of R&D for each firm each year over the 2000-2012 period. The weighted 

pool of R&D stock defined differentially for each firm is our spillover variable.  

 

 
80 Schedules 32 and 60 represent different parts of formT661. Schedule 60 corresponds to Part 2 of T661, which 
contains information for each project claimed in a given fiscal year. Schedule 32 corresponds to Part 5 of T661, 
which provides firm-level aggregate R&D spending.  
81 For some of these firms, spending information is missing for some or all projects. Therefore, we use information 

available in schedule 32 to augment their spending information. We do not have field information in schedule 32, 

but we can use the aggregate spending information reported in schedule 32 for firms that conducted R&D in a 

single field in a given year. The number of such firms is small. 
82 For example, if firm X undertook 4 projects in 2008 but provided technology field codes for 3 of them, then firm 

X is identified. For such firms, we drop projects without technology field codes in that year so that the firm 

becomes a full respondent for technology field. However, the number of affected firms is very small (less than 50), 

increasing our sample size by only a negligible extent. This adjustment affects both the second and third group but 

most of the affected firms are from the third group. 
83 The number of firms excluded from our sample on this basis is relatively small: 0.9% of total observations. 
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Appendix 2: Measures of Technological Proximity 

The Jaffe proximity measure  
Denote 𝑁 = the total number of firms  

Denote 𝐾 = the total number of technology fields 

Define a technology position vector for firm 𝑛 across 𝐾 technology fields.  

𝐹𝑛 = [ 𝐹𝑛1 𝐹𝑛2 …𝐹𝑛𝐾](1𝑥𝐾) 

where 𝐹𝑛𝑘 is the share of technology field 𝑘 in the total R&D expenditure of firm 𝑛. Let 𝑅𝐷𝑛denote the 

total R&D expenditure of firm 𝑛. Then, we have  𝑅𝐷𝑛 = ∑ 𝑅𝐷𝑛𝑘
𝐾
𝑘  and 𝐹𝑛𝑘 =

𝑅𝐷𝑛𝑘

𝑅𝐷𝑛
 . 

We obtain the following matrix by stacking 𝐹𝑛 for all 𝑛 vertically: 

𝑓 = [
𝐹11 ⋯ 𝐹1𝐾

⋮ ⋱ ⋮
𝐹𝑁1 ⋯ 𝐹𝑁𝐾

]

(𝑁𝑥𝐾)

 

Note that the Jaffe proximity measure is an uncentered correlation coefficient for a given pair of 

technology position vectors. Therefore, in the next step, we normalize each element by the standard 

deviation of the corresponding technology position vector.  

𝑓 =

[
 
 
 
 
𝐹11

(𝐹1𝐹1
′)0.5⁄ ⋯

𝐹1𝐾
(𝐹1𝐹1

′)0.5⁄

⋮ ⋱ ⋮
𝐹𝑁1

(𝐹𝑁𝐹𝑁
′ )0.5⁄ ⋯

𝐹𝑁𝐾
(𝐹𝑁𝐹𝑁

′ )0.5⁄ ]
 
 
 
 

(𝑁𝑥𝐾)

 

Finally, we compute a matrix of uncentered correlation coefficients as follows: 

�̃� =  𝑓𝑓′ 

 

�̃� =

[
 
 
 
 1 ⋯

𝐹1𝐹𝑁
[(𝐹1𝐹1

′)(𝐹𝑁𝐹𝑁
′ )]0.5⁄

⋮ ⋱ ⋮
𝐹𝑁𝐹1

[(𝐹1𝐹1
′)(𝐹𝑁𝐹𝑁

′ )]0.5⁄ ⋯ 1
]
 
 
 
 

(𝑁𝑥𝑁)

 

 

Replace the diagonal of �̃�with zeroes to exclude self-influence. 

�̃� =

[
 
 
 
 0 ⋯

𝐹1𝐹𝑁
[(𝐹1𝐹1

′)(𝐹𝑁𝐹𝑁
′ )]0.5⁄

⋮ ⋱ ⋮
𝐹𝑁𝐹1

[(𝐹𝑁𝐹𝑁
′ )(𝐹1𝐹1

′)]0.5⁄ ⋯ 0
]
 
 
 
 

(𝑁𝑥𝑁)

 

 

�̃� contains the standard Jaffe proximity measure between firms.  
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Mahalanobis-normed proximity measure 
Define a vector containing the distribution of technology 𝑘 across 𝑁 firms.  

𝑇𝑘 = [ 𝐹1𝑘 𝐹2𝑘 …𝐹𝑁𝑘](1𝑋𝑁) 

We obtain the following matrix by stacking 𝑇𝑘 for all 𝑘 vertically: 

𝑡 = [
𝐹11 ⋯ 𝐹𝑁1

⋮ ⋱ ⋮
𝐹1𝐾 ⋯ 𝐹𝑁𝐾

]

(𝐾𝑥𝑁)

 

*Note that 𝑡 = 𝑓′ 

In the next step, we normalize each element by the standard deviation of the corresponding vector. 

�̃� =

[
 
 
 
 
𝐹11

(𝑇1𝑇1
′)0.5⁄ ⋯

𝐹1𝑁
(𝑇1𝑇1

′)0.5⁄

⋮ ⋱ ⋮
𝐹𝐾1

(𝑇𝐾𝑇𝐾
′ )0.5⁄ ⋯

𝐹𝐾𝑁
(𝑇𝐾𝑇𝐾

′ )0.5⁄ ]
 
 
 
 

(𝐾𝑥𝑁)

 

Finally, we compute a matrix of uncentered correlation coefficients as follows: 

�̃� = �̃��̃�′ 

 

�̃� =

[
 
 
 
 1 ⋯

𝑇1𝑇𝐾
[(𝑇1𝑇1

′)(𝑇𝑁𝑇𝑁
′ )]0.5⁄

⋮ ⋱ ⋮
𝑇𝐾𝑇1

[(𝑇𝑁𝑇𝑁
′ )(𝑇1𝑇1

′)]0.5⁄ ⋯ 1
]
 
 
 
 

(𝐾𝑥𝐾)

 

�̃�can be interpreted as the standard Jaffe proximity measure defined for technology fields.Using �̃� as a 

weighting matrix, we compute the Mahalanobis-normed technology proximity measures as follows: 

�̃� =  𝑓�̃�𝑓′ 

Similarly, we replace the diagonal of �̃� with zeroes to exclude self-influence. �̃� is an (𝑁𝑥𝑁) matrix that 

contains the Mahalanobis normed proximity measures defined for firms.  
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Appendix 3: Calculating the rate of return to R&D 
Bloom, Schankerman, and Van Reenen (2013) introduce a framework for calculating rates of return 

based on estimated elasticities. They rely on three models which characterize the effect of own R&D and 

R&D performed by other firms on a given firm’s R&D, market value, and output (i.e. R&D equation, 

market value equation and production equation).84  

For the external rate of return, in addition to the direct effect of one firm’s R&D on the other firms’ 

output, they build in indirect effects of a change in one firm’s R&D on the other firms’ output through 

induced changes in their R&D. For the private rate of return, they exploit the relationship between the 

market value of a given firm and other firms’ R&D (weighted by the product market linkages) to 

incorporate output gains through the business stealing effect.85 This effect is added to the direct effect 

of own R&D on output when one calculates the private rate of return to R&D. By computing the private 

and external rates of return at the firm level, they incorporate asymmetry stemming from different 

output sizes (relative to R&D stock) and linkages in the technology and product market space.  

It is possible to implement a special case of their general framework based only on the production 

function. In the online appendix (Appendix G) to Bloom, Schankerman, and Van Reenen (2013), the 

authors discuss such special case in which they assume symmetric firms and “switch off” the indirect 

effects associated with induced changes in R&D and business stealing. Following the special case 

introduced in Bloom et al. (2013), we provide a brief technical description of the underlying algebra for 

deriving the private and external rate of return equation.  

First, we re-introduce our production function (explicitly writing out logs): 

(1) ln 𝑌𝑖 = 𝛾𝑙𝑛𝐾𝑖 + 𝜑𝑙𝑛𝑆𝑖 + 𝛽𝑋𝑖 
 

(2) ln 𝑌𝑖 = 𝛾𝑙𝑛𝐾𝑖 + 𝜑ln (∑ 𝑝𝑖𝑗𝐾𝑗𝑗≠𝑖 ) + 𝛽𝑋𝑖 

 

where 𝑆𝑖 is the technology-weighted sum of external R&D stock available to firm 𝑖 and 𝑋𝑖  is a vector of 

all the other variables and 𝑝𝑖𝑗  is our technological proximity measure defined between firm 𝑖 and firm 𝑗.  

Then, we take a first-order approximation of the nonlinear equation 𝑙n (∑ 𝑝𝑖𝑗𝐾𝑗𝑗≠𝑖 ) around an arbitrary 

point called 𝑙𝑛𝑅𝐷0. Define 𝑓𝑖 = 𝑙 n[∑ 𝑝𝑖𝑗𝐾𝑗𝑗≠𝑖 ] = 𝑙n [∑ 𝑝𝑖𝑗exp (𝑙𝑛𝐾𝑗)𝑗≠𝑖 ]. Then, we can approximate 𝑓𝑖 

as follows: 

(3) 𝑓𝑖 ≈ {𝑙𝑛 ∑ 𝑝𝑖𝑗𝐾𝑗
0

𝑗≠𝑖 − ∑ (
𝑝𝑖𝑗𝐾𝑗

0

∑ 𝑝𝑖𝑗𝐾𝑗
0

𝑗≠𝑖
) 𝑙𝑛𝑗≠𝑖 𝐾𝑗

0} + ∑ (
𝑝𝑖𝑗𝐾𝑗

0

∑ 𝑝𝑖𝑘𝐾𝑘
0

𝑘≠𝑖
) 𝑙𝑛𝑗≠𝑖 𝐾𝑗 

 

≡ 𝑎𝑖 + ∑𝑏𝑖𝑗𝑙𝑛𝐾𝑗

𝑗≠𝑖

 

 
84Their framework assumes that their reduced-form equations are correctly specified and have structural 
implications (i.e. all the relationships are causal). 
85Such output gain is an increase in the level of labour and capital employed by the firm holding its productivity 
level constant. 
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Using the above approximation, we can re-write the production function as follows: 

 

(4) ln 𝑌𝑖 = 𝜓𝑖 + 𝛾𝑙𝑛𝐾𝑖 + 𝜑 ∑ 𝑏𝑖𝑗𝑙𝑛𝐾𝑗𝑗≠𝑖 + 𝛽′𝑋𝑖 

 

where  𝜓𝑖 = 𝜑2𝑎𝑖.  

 

From the above, one can write the external rate of return to R&D performed by firm 𝑖 as 𝜑
∑ 𝑏𝑗𝑖𝑌𝑗𝑗≠𝑖

𝐾𝑖
       

which is equivalent to ∑
𝑑𝑌𝑖

𝑑𝐾𝑗
𝑖≠𝑗 . If we allow the external rate of return to differ by size of firm, then the 

external rate of return to R&D performed by small firm 𝑖 can be written as 𝜑𝑠
∑ 𝑏𝑗𝑖𝑌𝑗

𝑆(𝑁𝑠−1)
𝑗≠𝑖 +∑ 𝑏𝑘𝑖𝑌𝑘

𝐿𝑁𝐿
𝑘≠𝑖

𝐾𝑖
𝑠  and 

that by large firm 𝑘 as 𝜑𝐿 ∑ 𝑏𝑤𝑘𝑌𝑤
𝐿(𝑁𝐿−1)

𝑤≠𝑘 +∑ 𝑏𝑜𝑘𝑌𝑜
𝑆𝑁𝑠

𝑜≠𝑘

𝐾𝑘
𝐿  where 𝜑𝑠 and 𝜑𝑙  are size-specific spillover coefficients 

and 𝑁𝑆 and 𝑁𝐿  are the number of small and large firms respectively. The private of rate of return would 

simply be 𝛾
𝑌𝑖

𝐾𝑖
 or 𝛾𝑠 𝑌𝑖

𝐾𝑖
 and 𝛾𝑙 𝑌𝑘

𝐾𝑘
 by size.  

At this point, we can assume that 𝑌𝑖  = 𝑌𝑗 = 𝑌; 𝐾𝑖 = 𝐾𝑗 = 𝐾; and 𝑝𝑖𝑗 = 𝑝𝑖𝑘  = 𝑝 for all 𝑖, 𝑗, 𝑘. With this 

assumption, ∑ 𝑏𝑖𝑗𝑖≠𝑗 𝑌𝑖 becomes: 

(5) ∑ 𝑏𝑖𝑗𝑖≠𝑗 𝑌𝑗 = ∑
𝑝𝐾

𝑝∑ 𝐾𝑘≠𝑗
𝑌𝑖≠𝑗 = (𝑁 − 1)

𝐾

(𝑁−1)𝐾
𝑌 = 𝑌  

 

where 𝑁 is the number of firms in the economy. 

Hence, we have that the external rate of return equals ∑
𝑑𝑌𝑖

𝑑𝐾𝑗
𝑖≠𝑗 = 𝜑

∑ 𝑏𝑖𝑗𝑌𝑖𝑖≠𝑗

𝐾𝑗
=  𝜑

𝑌

𝐾
 with the 

assumption of identical firms. 

For the external rate by size, we first assume symmetry in technological linkages (i.e. 𝑝𝑖𝑗 = 𝑝𝑖𝑘 = 𝑝). For 

output and R&D stock, we can have either one of the following two assumptions:86 

 

A. Assume symmetry in output and R&D stock across firms within the same size group (i.e. 𝑌𝑖
𝑠 =

𝑌𝑗
𝑠 = 𝑌𝑠;  𝐾𝑖

𝑠 = 𝐾𝑗
𝑠 = 𝐾𝑠 and 𝑌𝑖

𝐿 = 𝑌𝑗
𝐿 = 𝑌𝐿;  𝐾𝑖

𝐿 = 𝐾𝑗
𝐿 = 𝐾𝐿). 

 

B. Assume symmetry in output and R&D stock across all firms (i.e. 𝑌𝑖
𝐿 = 𝑌𝑗

𝐿 = 𝑌; 𝐾𝑖
𝐿 = 𝐾𝑗

𝐿 = 𝐾). 

 

Assume symmetry in output and R&D stock across firms within the same size group 

(6) 𝑏𝑗𝑖 =
𝑝𝐾𝑠

(𝑁𝑠−1)𝑝𝐾𝑠+𝑁𝐿𝑝𝐾𝐿 =
𝐾𝑠

(𝑁𝑠−1)𝐾𝑠+𝑁𝐿𝐾𝐿 

 

 
86 One can have similar assumptions for the technological linkages. However, we get the same results regardless 

since 𝑝 cancels out in 𝑏.  
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(7) 𝑏𝑘𝑖 =
𝑝𝐾𝑠

𝑁𝑠𝑝𝐾𝑠+(𝑁𝐿−1)𝑝𝐾𝐿 =
𝐾𝑠

𝑁𝑠𝐾
𝑠+(𝑁𝐿−1)𝐾𝐿 

 

(8) 𝑀𝐸𝑅𝑠 = 𝜑𝑠
(𝑁𝑠−1)

𝐾𝑠𝑌𝑠

(𝑁𝑠−1)𝐾𝑠+𝑁𝐿𝐾𝐿+𝑁𝐿
𝐾𝑠𝑌𝐿

𝑁𝑠𝐾𝑠+(𝑁𝐿−1)𝐾𝐿

𝐾𝑠  

 

= 𝜑𝑠(
(𝑁𝑠 − 1)𝑌𝑠

(𝑁𝑠 − 1)𝐾𝑠 + 𝑁𝐿𝐾
𝐿
+

𝑁𝐿𝑌
𝐿

𝑁𝑠𝐾
𝑠 + (𝑁𝐿 − 1)𝐾𝐿

) 

 

(9) 𝑀𝐸𝑅𝐿 = 𝜑𝐿(
(𝑁𝐿−1)𝑌𝐿

(𝑁𝐿−1)𝐾𝐿+𝑁𝑆𝐾𝑆 +
𝑁𝑠𝑌

𝑠

𝑁𝐿𝐾𝐿+(𝑁𝑆−1)𝐾𝑆) 

 

Then, we approximate 𝑁𝐿𝐾
𝐿 + 𝑁𝑆𝐾

𝑆  ≅ 𝑁𝐿𝐾
𝐿 + 𝑁𝑆𝐾

𝑆 − 𝐾𝐿; 𝑁𝐿𝐾
𝐿 + 𝑁𝑆𝐾

𝑆  ≅ 𝑁𝐿𝐾
𝐿 + 𝑁𝑆𝐾

𝑆 − 𝐾𝑆 

and 𝑁𝐿𝑌
𝐿 + 𝑁𝑆𝑌

𝑆  ≅ 𝑁𝐿𝑌
𝐿 + 𝑁𝑆𝑌

𝑆 − 𝑌𝐿; 𝑁𝐿𝑌
𝐿 + 𝑁𝑆𝑌

𝑆  ≅ 𝑁𝐿𝑌
𝐿 + 𝑁𝑆𝑌

𝑆 − 𝑌𝑆.87 

 

Using these approximations, we obtain the external rate of return by size as follows: 

(10) 𝑀𝐸𝑅𝑠 = 𝜑𝑠 𝑁𝑠𝑌
𝑠+𝑁𝐿𝑌𝐿

𝑁𝑠𝐾
𝑆+𝑁𝐿𝐾𝐿 which is equivalent to 𝜑𝑠 �̅�

�̅�
 

 

(11) 𝑀𝐸𝑅𝐿 = 𝜑𝐿 𝑁𝑠𝑌
𝑠+𝑁𝐿𝑌𝐿

𝑁𝑠𝐾
𝑠𝐾𝑠+𝑁𝐿𝐾𝐿 which is equivalent to 𝜑𝐿 �̅�

�̅�
 

 

Assume symmetry in output and R&D stock across all firms 

 

(12)  𝑏𝑗𝑖 =
𝑝𝐾

(𝑁𝑠−1)𝑝𝐾+𝑁𝐿𝑝𝐾
=

𝐾

(𝑁𝑠−1)𝐾+𝑁𝐿𝐾
 

 

(13) 𝑏𝑘𝑖 =
𝑝𝐾

𝑁𝑠𝑝𝐾+(𝑁𝐿−1)𝑝𝐾
=

𝐾

𝑁𝑠𝐾+(𝑁𝐿−1)𝐾
 

 

(14) 𝑀𝐸𝑅𝑠 = 𝜑𝑠
(𝑁𝑠−1)

𝐾𝑌

(𝑁𝑠−1)𝐾+𝑁𝐿𝐾
+𝑁𝐿

𝐾𝑌

𝑁𝑠𝐾+(𝑁𝐿−1)𝐾

𝐾
 

 

= 𝜑𝑠(
(𝑁𝑠 − 1)𝑌

(𝑁𝑠 − 1)𝐾 + 𝑁𝐿𝐾
+

𝑁𝐿𝑌

𝑁𝑠𝐾 + (𝑁𝐿 − 1)𝐾
) 

 

 
87 That is, the total R&D stock (output) minus R&D stock (output) of one firm is approximately equal to the total 
R&D stock (output). 
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= 𝜑𝑠 (
𝑁𝑌 − 𝑌

𝑁𝐾 − 𝐾
) = 𝜑𝑠

(𝑁 − 1)𝑌

(𝑁 − 1)𝐾
= 𝜑𝑠

𝑌

𝐾
 

where 𝑁 = 𝑁𝑠 + 𝑁𝐿. 

Similarly,  

(14) 𝑀𝐸𝑅𝐿 = 𝜑𝐿 𝑌

𝐾
 

The private rate of return can be written as 𝛾
𝑌

𝐾
 or 𝛾𝑠 𝑌𝑠

𝐾𝑠 and 𝛾𝑙 𝑌𝑙

𝐾𝑙 by size based on the assumption A. 
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